Skip to content
  • enzuazua
  • Events Calendar
  • Jobs
cmc.deusto.eus
  • Home
  • About us
    • About DeustoCCM
    • Head of DeustoCCM
    • Team
    • Past Members
  • Research
    • Projects
    • ERC CoDeFeL
    • Computational Mathematics Research Group
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications by year
      • Publications 2025
      • Publications 2024
      • Publications 2023
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Seminars
    • Highlights
    • Our Latest
    • Courses
    • Past Events
    • enzuazua
    • Gallery
  • Jobs
  • Contact

A potential game perspective in Federated Learning

K. Liu, Z. Wang, E. Zuazua (2025) A potential game perspective in Federated Learning, arxiv:2411.11793

Abstract. Federated learning (FL) is an emerging paradigm for training machine learning models
across distributed clients. Traditionally, in FL settings, a central server assigns training efforts (or strategies) to clients. However, from a market-oriented perspective, clients may independently choose their training efforts based on rational self-interest. To explore this, we propose a potential game framework where each client’s payoff is determined by their individual efforts and the rewards provided by the server. The rewards are influenced by the collective efforts of all clients and can be modulated through a reward factor. Our study begins by establishing the existence of Nash equilibria (NEs), followed by an investigation of uniqueness in homogeneous settings. We demonstrate a significant improvement in clients’ training efforts at a critical reward factor, identifying it as the optimal choice for the server. Furthermore, we prove the convergence of the best-response algorithm to compute NEs for our FL game. Finally, we apply the training efforts derived from specific NEs to a real-world FL scenario, validating the effectiveness of the identified optimal reward factor.

arxiv: 2411.11793

  • Benasque XI Workshop-Summer School 2026: Partial differential equations, optimal design and numerics
  • The Mathematics of Scientific Machine Learning and Digital Twins
  • DeustoCCM Seminar: Research on Control Problems of Several Types of Infinite-Dimensional Systems
  • DeustoCCM Seminar: Developing Mathematical and Physical Tools for Multiscale Dynamical Systems. Applications to Neurophysiological Data
Copyright 2016 - 2025 DeustoCCM — cmc.deusto.eus. All rights reserved. Chair of Computational Mathematics, University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad