A PDE describing Roots of Polynomials under Differentiation

Speaker: Prof. Dr. Stefan Steinerberger
Affiliation: University of Washington, USA
Request Zoom meeting link

Abstract. Suppose you have a polynomial p_n (think of n as being quite large) and suppose you know where the roots are. What can you say about the roots of the derivative p_n’? Clearly, one could compute them but if n is large, that is not so easy — can you make a softer statement, predicting “roughly” where they are? This question goes back to Gauss who proved a pretty Theorem about it. We will ask the question of what happens when one keeps differentiating: if the roots of p_n look like, say, a Gaussian, what can you say about the roots of the polynomial after you have differentiated 0.1*n times? This leads to some very fun equations and some fascinating new connections to Probability Theory, Potential Theory and Partial Differential Equations. In particular, there is a nice nonlocal PDE that seems to describe everything. I promise nice pictures!

The event is finished.

Scroll to Top
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad