Skip to content
  • enzuazua
  • Events Calendar
  • Jobs
cmc.deusto.eus
  • Home
  • About us
    • About DeustoCCM
    • Head of DeustoCCM
    • Team
    • Past Members
  • Research
    • Projects
    • ERC CoDeFeL
    • Computational Mathematics Research Group
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications by year
      • Publications 2025
      • Publications 2024
      • Publications 2023
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Seminars
    • Highlights
    • Our Latest
    • Courses
    • Past Events
    • enzuazua
    • Gallery
  • Jobs
  • Contact

Analysis and numerics solvability of backward-forward conservation laws

Thibault Liard, Enrique Zuazua. Analysis and numerics solvability of backward-forward conservation laws. (2020)

Abstract. In this paper, we study the problem of initial data identification for the one-dimensional Burgers equation. This problem consists in identifying the set of initial data evolving to a given target at a final time. Due to the time-irreversibility of the Burgers equation, some target functions are unattainable from solutions of this equation, making the inverse problem under consideration ill-posed. To get around this issue, we introduce a non-smooth optimization problem which consists in minimizing the difference between the predictions of the Burgers equation and the observations of the system at a final time in L2(R) norm. The two main contributions of this work are as follows.
• We fully characterize the set of minimizers of the aforementioned non-smooth optimization problem.
• A wave-front tracking method is implemented to construct numerically all of them.
One of minimizers is the backward entropy solution, constructed using a backward-forward method.

Read Full Paper

  • Benasque XI Workshop-Summer School 2026: Partial differential equations, optimal design and numerics
  • The Mathematics of Scientific Machine Learning and Digital Twins
  • DeustoCCM Seminar: Research on Control Problems of Several Types of Infinite-Dimensional Systems
  • DeustoCCM Seminar: Developing Mathematical and Physical Tools for Multiscale Dynamical Systems. Applications to Neurophysiological Data
Copyright 2016 - 2025 DeustoCCM — cmc.deusto.eus. All rights reserved. Chair of Computational Mathematics, University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad