Skip to content
  • enzuazua
  • Events Calendar
  • Jobs
cmc.deusto.eus
  • Home
  • About us
    • About DeustoCCM
    • Head of DeustoCCM
    • Team
    • Past Members
  • Research
    • Projects
    • ERC CoDeFeL
    • Computational Mathematics Research Group
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications by year
      • Publications 2025
      • Publications 2024
      • Publications 2023
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Seminars
    • Highlights
    • Our Latest
    • Courses
    • Past Events
    • enzuazua
    • Gallery
  • Jobs
  • Contact

Model reduction of converter-dominated power systems by Singular Perturbation Theory

U. Biccari, N. Sakamoto, E. Unamuno, D. Madariaga, E. Zuazua, J.A. Barrena.

Model reduction of converter-dominated power systems by Singular Perturbation Theory

Abstract: The increasing integration of power electronic devices is driving the development of more advanced tools and
methods for the modeling, analysis, and control of modern power systems to cope with the different time-scale oscillations. In this paper, we propose a general methodology based on the singular perturbation theory to reduce the order of systems modeled by ordinary differential equations and the computational burden in their simulation. In particular, we apply the proposed methodology to a simplified power system scenario comprised of three inverters in parallel—controlled as synchronverters—connected to an ideal grid. We demonstrate by time-domain simulations that the reduced and decoupled system obtained with the proposed approach accurately represents the dynamics of the original system because it preserves the non-linear dynamics. This shows the efficiency of our technique even for transient perturbations and has relevant applications including the simplification of the Lyapunov stability assessment or the design of non-linear controllers for large-scale power systems.

 Read Full Paper

  • Benasque XI Workshop-Summer School 2026: Partial differential equations, optimal design and numerics
  • The Mathematics of Scientific Machine Learning and Digital Twins
  • DeustoCCM Seminar: Research on Control Problems of Several Types of Infinite-Dimensional Systems
  • DeustoCCM Seminar: Developing Mathematical and Physical Tools for Multiscale Dynamical Systems. Applications to Neurophysiological Data
Copyright 2016 - 2025 DeustoCCM — cmc.deusto.eus. All rights reserved. Chair of Computational Mathematics, University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad