Skip to content
  • enzuazua
  • Events Calendar
  • Jobs
cmc.deusto.eus
  • Home
  • About us
    • About DeustoCCM
    • Head of DeustoCCM
    • Team
    • Past Members
  • Research
    • Projects
    • ERC CoDeFeL
    • Computational Mathematics Research Group
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications by year
      • Publications 2025
      • Publications 2024
      • Publications 2023
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Seminars
    • Highlights
    • Our Latest
    • Courses
    • Past Events
    • enzuazua
    • Gallery
  • Jobs
  • Contact

Large-time asymptotics in deep learning

C. Esteve, B. Geshkovski, D. Pighin, E. Zuazua (2025) Large-time asymptotics in deep learning, https://hal.archives-ouvertes.fr/hal-02912516

Abstract. We consider the neural ODE perspective of supervised learning and study the impact of the final time T (which may indicate the depth of a corresponding ResNet) in training. For the classical L2–regularized empirical risk minimization problem, whenever the neural ODE dynamics are homogeneous with respect to the parameters, we show that the training error is at most of the order (1T). Furthermore, if the loss inducing the empirical risk attains its minimum, the optimal parameters converge to minimal L2–norm parameters which interpolate the dataset. By a natural scaling between T and the regularization hyperparameter λ we obtain the same results when λ↘0 and T is fixed. This allows us to stipulate generalization properties in the overparametrized regime, now seen from the large depth, neural ODE perspective. To enhance the polynomial decay, inspired by turnpike theory in optimal control, we propose a learning problem with an additional integral regularization term of the neural ODE trajectory over [0,T]. In the setting of ℓp–distance losses, we prove that both the training error and the optimal parameters are at most of the order (e−μt) in any t∈[0,T]. The aforementioned stability estimates are also shown for continuous space-time neural networks, taking the form of nonlinear integro-differential equations. By using a time-dependent moving grid for discretizing the spatial variable, we demonstrate that these equations provide a framework for addressing ResNets with variable widths.

Read Full Paper

Arxiv: arXiv:2008.02491

  • Benasque XI Workshop-Summer School 2026: Partial differential equations, optimal design and numerics
  • The Mathematics of Scientific Machine Learning and Digital Twins
  • DeustoCCM Seminar: Research on Control Problems of Several Types of Infinite-Dimensional Systems
  • DeustoCCM Seminar: Developing Mathematical and Physical Tools for Multiscale Dynamical Systems. Applications to Neurophysiological Data
Copyright 2016 - 2025 DeustoCCM — cmc.deusto.eus. All rights reserved. Chair of Computational Mathematics, University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad