Skip to content
  • enzuazua
  • Events Calendar
  • Jobs
cmc.deusto.eus
  • Home
  • About us
    • About DeustoCCM
    • Head of DeustoCCM
    • Team
    • Past Members
  • Research
    • Projects
    • ERC CoDeFeL
    • Computational Mathematics Research Group
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications by year
      • Publications 2025
      • Publications 2024
      • Publications 2023
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Seminars
    • Highlights
    • Our Latest
    • Courses
    • Past Events
    • enzuazua
    • Gallery
  • Jobs
  • Contact

Local Stability and Convergence of Unconstrained Model Predictive Control

D. Veldman, E. Zuazua (2025)  Local Stability and Convergence of Unconstrained Model Predictive Control

Abstract. The local stability and convergence for Model Predictive Control (MPC) of unconstrained nonlinear dynamics based on a linear time-invariant plant model is studied. Based on the long-time behavior of the solution of the Riccati Differential Equation (RDE), explicit error estimates are derived that clearly demonstrate the influence of the two critical parameters in MPC: the prediction horizon T and the control horizon \tau. In particular, if the MPC-controller has access to an exact (linear) plant model, the MPC-controls and the corresponding optimal state trajectories converge exponentially to the solution of an infinite-horizon optimal control problem when T-\tau \rightarrow \infty. When the difference between the linear model and the nonlinear plant is sufficiently small in a neighborhood of the origin, the MPC strategy is locally stabilizing and the influence of modeling errors can be reduced by choosing the control horizon $\tau$ smaller. The obtained convergence rates are validated in numerical simulations.

Read Full Paper

arxiv: 2206.01097

  • Benasque XI Workshop-Summer School 2026: Partial differential equations, optimal design and numerics
  • The Mathematics of Scientific Machine Learning and Digital Twins
  • DeustoCCM Seminar: Research on Control Problems of Several Types of Infinite-Dimensional Systems
  • DeustoCCM Seminar: Developing Mathematical and Physical Tools for Multiscale Dynamical Systems. Applications to Neurophysiological Data
Copyright 2016 - 2025 DeustoCCM — cmc.deusto.eus. All rights reserved. Chair of Computational Mathematics, University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad