Skip to content
  • Publications
  • Jobs
  • enzuazua
  • Seminars
  • Events Calendar
cmc.deusto.eus
  • Home
  • About us
    • About the Chair
    • Head of the Chair
    • Team
    • Past Members
  • Research
    • Projects
    • ERC – DyCon
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications Relased
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Past Events
    • News
    • Seminars
    • Courses
    • enzuazua
    • Gallery
  • Jobs
  • Contact

Eigenvalue bounds for the Gramian operator of the heat equation

M. Lazar, Zuazua E.. Eigenvalue bounds for the Gramian operator of the heat equation (2023)

Abstract. This paper is concerned with the eigenvalue decay of solution operators to operator Lyapunov equations, a relevant topic in the context of model reduction for parabolic control problems. We mainly focus on the Gramian operator, which arises in the context of control and observation of heat processes in infinite time, which is normally the first step towards observations in a finite time horizon.

By improving existing energy and observability estimates for parabolic equations, we obtain both upper and lower bounds on the convergence rate of the eigenvalues of the Gramian operator towards zero. Both bounds follow the same polynomial decay rate, up to a multiplicative constant, which ensures their optimality. This confirms the slow decay of the eigenvalues and limits the efficiency of model reduction. The theoretical findings are supported by numerical results.

Read Full Paper

arxiv: 00.0000

Last updated on July 21, 2023

Post navigation

Previous Post
Long-time convergence of a nonlocal Burgers’ equation towards the local N-wave
Next Post
Optimal design of sensors via geometric criteria

Last Publications

Control of neural transport for normalizing flows

A Two-Stage Numerical Approach for the Sparse Initial Source Identification of a Diffusion-Advection Equation

Gaussian Beam ansatz for finite difference wave equations

Long-time convergence of a nonlocal Burgers’ equation towards the local N-wave

Optimal design of sensors via geometric criteria

  • Control of neural transport for normalizing flows
  • A Two-Stage Numerical Approach for the Sparse Initial Source Identification of a Diffusion-Advection Equation
  • Gaussian Beam ansatz for finite difference wave equations
  • Optimal design of sensors via geometric criteria
  • Eigenvalue bounds for the Gramian operator of the heat equation
  • Control of neural transport for normalizing flows
  • A Two-Stage Numerical Approach for the Sparse Initial Source Identification of a Diffusion-Advection Equation
  • Gaussian Beam ansatz for finite difference wave equations
  • Optimal design of sensors via geometric criteria
  • Eigenvalue bounds for the Gramian operator of the heat equation
Copyright 2016 - 2023 — cmc.deusto.eus. All rights reserved. Chair of Computational Mathematics, Deusto Foundation - University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad