Skip to content
  • Publications
  • Jobs
  • enzuazua
  • Seminars
  • Events Calendar
cmc.deusto.eus
  • Home
  • About us
    • About the Chair
    • Head of the Chair
    • Team
    • Past Members
  • Research
    • Projects
    • ERC CoDeFeL
    • Computational Mathematics Research Group
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications by year
      • Publications 2025
      • Publications 2024
      • Publications 2023
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Past Events
    • News
    • Seminars
    • Courses
    • enzuazua
    • Gallery
  • Jobs
  • Contact

Spectral inequalities for elliptic pseudo-differential operators on closed manifolds

D. Cardona. Spectral inequalities for elliptic pseudo-differential operators on closed manifolds (2022)

Abstract. Let (M,g) be a closed Riemannian manifold. The aim of this work is to prove the Lebeau-Robbiano spectral inequality for a positive elliptic pseudo-differential operator E(x,D) on M, of order ν>0, in the Hörmander class Ψνρ,δ(M). In control theory this has been an open problem prior to this work. As an application of this fundamental result, we establish the null-controllability of the (fractional) heat equation associated with E(x,D). The sensor ω⊂M in the observability inequality is an open subset of M. The obtained results (that are, the corresponding spectral inequality for an elliptic operator and the null-controllability for its diffusion model) extend in the setting of closed manifolds, classical results of the control theory, as the spectral inequality due to Lebeau and Robbiano and their result on the null-controllability of the heat equation giving a complete picture of the subject in the setting of closed manifolds. For the proof of the spectral inequality we introduce a periodization approach in time inspired by the global pseudo-differential calculus due to Ruzhansky and Turunen.

Read Full Paper

arxiv: 2209.10690

Post navigation

Previous Post
Control and Machine Learning
Next Post
Workshop on Control Problems Workshop on Control Problems

Last Publications

Clustering in Pure-Attention Hardmax Transformers and its Role in Sentiment Analysis

A potential game perspective in Federated Learning

Regional and Partial Observability and Control of Waves

Cluster-based classification with neural ODEs via control

Optimal convergence rates for the finite element approximation of the Sobolev constant

  • DeustoCCM Seminar: Universal approximation and convexified training in neural networks
  • Collaboration meeting with CIC bioGUNE (June 9, 2025)
  • Clustering in Pure-Attention Hardmax Transformers and its Role in Sentiment Analysis
  • DeustoCCM Seminar: Soluciones de viscosidad: Teoría y aplicaciones
  • DeustoCCM Seminar by R. Lecaros and J. Lopez
Copyright 2016 - 2025 — cmc.deusto.eus. All rights reserved. Chair of Computational Mathematics, Deusto Foundation - University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad