Skip to content
  • enzuazua
  • Events Calendar
  • Jobs
cmc.deusto.eus
  • Home
  • About us
    • About DeustoCCM
    • Head of DeustoCCM
    • Team
    • Past Members
  • Research
    • Projects
    • ERC CoDeFeL
    • Computational Mathematics Research Group
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications by year
      • Publications 2025
      • Publications 2024
      • Publications 2023
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Seminars
    • Highlights
    • Our Latest
    • Courses
    • Past Events
    • enzuazua
    • Gallery
  • Jobs
  • Contact

Tracking controllability for finite-dimensional linear systems

S. Zamorano, E. Zuazua (2025)Tracking controllability for finite-dimensional linear systems arXiv:2407.18641v2

Abstract. In this work, we present a functional analytic framework for tracking controllability in finite-dimensional linear systems. By leveraging the Hilbert Uniqueness Method (HUM) and duality principles, we rigorously characterize tracking controllability through a non-standard observability inequality for the adjoint system. This enables the synthesis of minimum-norm tracking controls while revealing novel regularity requirements that depend intricately on system structure and the projection operator. Our approach generalizes classical concepts, embedding them in an energy-minimization context that extends functional output controllability and invertibility. Explicit control constructions in the scalar case illustrate these principles, and numerical experiments validate the approach for both smooth and non-smooth targets. output controllability and invertibility.

arxiv: 2407.18641v2

  • Benasque XI Workshop-Summer School 2026: Partial differential equations, optimal design and numerics
  • The Mathematics of Scientific Machine Learning and Digital Twins
  • DeustoCCM Seminar: Research on Control Problems of Several Types of Infinite-Dimensional Systems
  • DeustoCCM Seminar: Developing Mathematical and Physical Tools for Multiscale Dynamical Systems. Applications to Neurophysiological Data
Copyright 2016 - 2025 DeustoCCM — cmc.deusto.eus. All rights reserved. Chair of Computational Mathematics, University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad