Skip to content
  • Publications
  • Jobs
  • enzuazua
  • Seminars
  • Events Calendar
cmc.deusto.eus
  • Home
  • About us
    • About the Chair
    • Head of the Chair
    • Team
    • Past Members
  • Research
    • Projects
    • ERC CoDeFeL
    • Research Group in Computational Mathematics
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications by year
      • Publications 2025
      • Publications 2024
      • Publications 2023
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Past Events
    • News
    • Seminars
    • Courses
    • enzuazua
    • Gallery
  • Jobs
  • Contact

A controlled multiscale model for traffic regulation via autonomous vehicles

T. Liard, . A controlled multiscale model for traffic regulation via autonomous vehicles. (2019)

Abstract. Autonomous vehicles ($AV$s) allow new ways of regulating the traffic flow on road networks. Most of available results in this direction are based on microscopic approaches, where ODEs describe the evolution of regular cars and AVs. In this paper, we propose a multiscale approach, based on recently developed models for moving bottlenecks. Our main result is the proof of existence of solutions for open-loop controls with bounded variation.

Read Full Paper

Post navigation

Previous Post
On entropic solutions to conservation laws coupled with moving bottlenecks
Next Post
Seminar: Multiplicative controllability for parabolic equations Seminar: Multiplicative controllability for parabolic equations

Last Publications

Regional and Partial Observability and Control of Waves

Cluster-based classification with neural ODEs via control

Optimal convergence rates for the finite element approximation of the Sobolev constant

Boundary observation and control for fractional heat and wave equations

Almost periodic turnpike phenomenon for time-dependent systems

  • DeustoCCM seminar: Controllability on some PDEs with dynamic boundary conditions
  • Regional and Partial Observability and Control of Waves
  • Cluster-based classification with neural ODEs via control
  • Optimal convergence rates for the finite element approximation of the Sobolev constant
  • Boundary observation and control for fractional heat and wave equations
Copyright 2016 - 2025 — cmc.deusto.eus. All rights reserved. Chair of Computational Mathematics, Deusto Foundation - University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad