Skip to content
  • Publications
  • Jobs
  • enzuazua
  • Seminars
  • Events Calendar
  • Home
  • About us
    • About the Chair
    • Head of the Chair
    • Team
    • Past Members
  • Research
    • Projects
    • ERC – DyCon
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications Relased
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Past Events
    • News
    • Seminars
    • Courses
    • enzuazua
    • Gallery
  • Jobs
  • Contact

A Two-Stage Numerical Approach for the Sparse Initial Source Identification of a Diffusion-Advection Equation

U. Biccari, Y. Song, X. Yuan, E. Zuazua. A Two-Stage Numerical Approach for the Sparse Initial Source Identification of a Diffusion-Advection Equation
(2022)

Abstract. We consider the problem of identifying a sparse initial source condition to achieve a given state distribution of a diffusion-advection partial differential equation after a given final time. The initial condition is assumed to be a finite combination of Dirac measures. The locations and intensities of this initial condition are required to be identified. This problem is known to be exponentially ill-posed because of the strong diffusive and smoothing effects. We propose a two-stage numerical approach to treat this problem. At the first stage, to obtain a sparse initial condition with the desire of achieving the given state subject to a certain tolerance, we propose an optimal control problem involving sparsity-promoting and ill-posedness-avoiding terms in the cost functional, and introduce a generalized primal-dual algorithm for this optimal control problem. At the second stage, the initial condition obtained from the optimal control problem is further enhanced by identifying its locations and intensities in its representation of the combination of Dirac measures. This two-stage numerical approach is shown to be easily implementable and its efficiency in short time horizons is promisingly validated by the results of numerical experiments. Some discussions on long time horizons are also included.

Read Full Paper

Last updated on March 17, 2022

Post navigation

Previous Post
Smart control. Two converging points of view Smart control. Two converging points of view
Next Post
MASSAI 2022: Mediterranean and African Summer School on Artificial Intelligence MASSAI 2022: Mediterranean and African Summer School on Artificial Intelligence

Last Publications

Optimal actuator design via Brunovsky’s normal form

Stability and Convergence of a Randomized Model Predictive Control Strategy

Slow decay and Turnpike for Infinite-horizon Hyperbolic LQ problems

Control of certain parabolic models from biology and social sciences

Relaxation approximation and asymptotic stability of stratified solutions to the IPM equation

  • FAU MoD Lecture: Applications of AAA Rational Approximation
  • DASEL
  • Optimal actuator design via Brunovsky’s normal form
  • ERC DyCon Impact Dimension (2016-2022)
  • Spectral inequalities for pseudo-differential operators and control theory on compact manifolds
  • FAU MoD Lecture: Applications of AAA Rational Approximation
  • DASEL
  • Optimal actuator design via Brunovsky’s normal form
  • ERC DyCon Impact Dimension (2016-2022)
  • Spectral inequalities for pseudo-differential operators and control theory on compact manifolds
Copyright 2016 - 2023 — . All rights reserved. Chair of Computational Mathematics, Deusto Foundation - University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad