Skip to content
  • Publications
  • Jobs
  • enzuazua
  • Seminars
  • Events Calendar
  • Home
  • About us
    • About the Chair
    • Head of the Chair
    • Team
    • Past Members
  • Research
    • Projects
    • ERC – DyCon
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications Relased
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Past Events
    • News
    • Seminars
    • Courses
    • enzuazua
    • Gallery
  • Jobs
  • Contact

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Bárcena-Petisco J.A., Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term (2020). HAL Id: hal-02455632

Abstract. In this paper we consider the heat equation with Neumann, Robin and mixed boundary conditions (with coefficients on the boundary which depend on the space variable). The main results concern the behaviour of the cost of the null controllability with respect to the diffusivity when the control acts in the interior. First, we prove that if we almost have Dirichlet boundary conditions in the part of the boundary in which the flux of the transport enters, the cost of the controllability decays for a time T sufficiently large. Next, we show some examples of Neumann and mixed boundary conditions in which for any time T > 0 the cost explodes exponentially as the diffusivity vanishes. Finally, we study the cost of the problem with Neumann boundary conditions when the control is localized in the whole domain.

Read Full Paper

Tags:
heat equationsingular limitsspectral decompositiontransport equationuniform controllability
Last updated on March 17, 2022

Post navigation

Previous Post
CONVADP CONVADP
Next Post
Control of reaction-diffusion under state constraints – Heterogeneous setting: Gene-flow Control of reaction-diffusion under state constraints – Heterogeneous setting: Gene-flow

Last Publications

Nonuniqueness of minimizers for semilinear optimal control problems

The turnpike property and the long-time behavior of the Hamilton-Jacobi-Bellman equation for finite-dimensional LQ control problems

A framework for randomized time-splitting in linear-quadratic optimal control

Numerical Control: Part A

Numerical hypocoercivity for the Kolmogorov equation

  • Mini-Workshop “Calculus of Variations and Functional Inequalities”
  • Protected: Model Predictive Control with Random Batch Method for Linear-Quadratic Optimal Control: Introduction and Matlab Implementation
  • Benasque Workshop-Summer School: PDE’s, Optimal Design and Numerics
  • A framework for randomized time-splitting in linear-quadratic optimal control
  • Nonuniqueness of minimizers for semilinear optimal control problems
Copyright 2016 - 2022 — . All rights reserved. Chair of Computational Mathematics, Deusto Foundation - University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad