Differentiability with respect to the initial condition for Hamilton-Jacobi equations

Esteve C., Zuazua E.. Differentiability with respect to the initial condition for Hamilton-Jacobi equations (2022) SIAM Journal on Mathematical Analysis, Vol. 54, No. 5, pp. 5388-5423 https://doi.org/10.1137/22M1469353

Abstract. We prove that the viscosity solution to a Hamilton-Jacobi equation with a smooth convex Hamiltonian of the form H(x,p) is differentiable with respect to the initial condition. Moreover, the directional Gâteaux derivatives can be explicitly computed almost everywhere in R^N by means of the optimality system of the associated optimal control problem. We also prove that these directional Gâteaux derivatives actually correspond to the unique duality solution to the linear transport equation with discontinuous coefficient, resulting from the linearization of the Hamilton-Jacobi equation. The motivation behind these differentiability results arises from the following optimal inverse-design problem: given a time horizon T>0 and a target function u_T, construct an initial condition such that the corresponding viscosity solution at time T minimizes the L^2-distance to u_T. Our differentiability results allow us to derive a necessary first-order optimality condition for this optimization problem, and the implementation of gradient-based methods to numerically approximate the optimal inverse design.

Read Full Paper

arxiv: 2110.11845