Model predictive control with random batch methods for a guiding problem

Ko Dongnam, Zuazua Enrique. Model predictive control with random batch methods for a guiding problem (2021). Math. Models Methods Appl. Sci., Vol. 31, No. 8, pp. 1569-1592. (2021) DOI:

Abstract. We model, simulate and control the guiding problem for a herd of evaders under the action of repulsive drivers. The problem is formulated in an optimal control framework, where the drivers (controls) aim to guide the evaders (states) to a desired region of the Euclidean space.
The numerical simulation of such models quickly becomes unfeasible for a large number of interacting agents. To reduce the computational cost, we use the Random Batch Method (RBM), which provides a computationally feasible approximation of the dynamics. At each time step, the RBM randomly divides the set of particles into small subsets (batches), considering only the interactions inside each batch. Due to the averaging effect, the RBM approximation converges to the exact dynamics as the time discretization gets finer. We propose an algorithm that leads to the optimal control of a fixed RBM approximated trajectory using a classical gradient descent. The resulting control is not optimal for the original complete system, but rather for the reduced RBM model. We then adopt a Model Predictive Control (MPC) strategy to handle the error in the dynamics. While the system evolves in time, the MPC strategy consists in periodically updating the state and computing the optimal control over a long-time horizon, which is implemented recursively in a shorter time-horizon. This leads to a semi-feedback control strategy. Through numerical experiments we show that the combination of RBM and MPC leads to a significant reduction of the computational cost, preserving the capacity of controlling the overall dynamics.

Read Full Paper

Arxiv: arXiv:2004.14834