T. Liard, Benedetto Piccoli. On entropic solutions to conservation laws coupled with moving bottlenecks. (2019)
Abstract. Moving bottlenecks in road traffic represent an interesting mathematical problem, which can be modeled via coupled PDE-ODE systems. We consider the case of a scalar conservation law modeling the evolution of vehicular traffic and an ODE with discontinuous right-hand side for the bottleneck. The bottleneck usually corresponds to a slow moving vehicle influencing the bulk traffic flow via a moving flux pointwise constraint. The definition of solutions requires a special entropy condition selecting nonclassical shocks and we prove existence of such solutions for initial data with bounded variation. Approximate solutions are constructed via the wave-front tracking method and their limit are solutions of the Cauchy problem PDE-ODE.