Spectral inequalities for pseudo-differential operators and control theory on compact manifolds

Spectral inequalities for pseudo-differential operators and control theory on compact manifolds

Spain 21.11.2022

Spectral inequalities for pseudo-differential operators and control theory on compact manifolds

Author: Duvan Cardona

In this post, we explain some results related to the null-controllability of diffusion models on closed manifolds, which is a problem of wide interest in control theory, and its relation with the validity of spectral inequalities for differential and pseudo-differential operators. We summarise our results as follows.

• We extend some spectral inequalities for elliptic positive pseudo-differential operators on compact manifolds (criteria are based on the symbols defined by local coordinate systems). Hörmander classes Ψρ,δm(M),\Psi^m_{\rho,\delta}(M), 0δ<ρ1,0\leq \delta \lt \rho \leq 1, ρ1δ.\rho \geq 1-\delta. • Spectral inequalities for elliptic positive pseudo-differential operators on compact Lie groups (criteria are based on the matrix-valued symbols of operators). Hörmander classes Ψρ,δm(G),\Psi^m_{\rho,\delta}(G), 0δ<ρ1.0 \leq \delta \lt \rho \leq 1. • Applications to control theory: null-controllability for the fractional heat equation for an elliptic operator.

Below, we will explain our setting and we will give some preliminaries about the theory of pseudo-differential operators. In the end, we present our results about spectral inequalities and our applications to control theory.

 

1. Our setting: compact Lie groups and general manifolds without boundary

• Lie groups = manifolds with symmetries.
• compact Lie groups = are diffeomorphic to closed subgroups of U(N)={MCN×N:M=M1}\textnormal{U}(N)=\{M\in \mathbb{C}^{N\times N}:M^*=M^{-1}\} for NN large enough.

• Examples: the torus Tn(R/Z)n,\mathbb{T}^n\cong (\R/\mathbb{Z})^n, linear Lie groups (groups of matrices), SU(n),\textnormal{SU}(n), SO(n),\textnormal{SO}(n), etc. In particular, SU(2)S3;\textnormal{SU}(2)\cong \mathbb{S}^3; 0δ<ρ1.0\leq \delta \lt \rho\leq 1. • If MM is a closed, connected and simply connected, then MS3.M\cong \mathbb{S}^3. (The Poincaré conjecture proved by Perelman). Our approach induces global spectral inequalities on MM for any 0δ<ρ1.0\leq \delta \lt \rho\leq 1. • General compact manifolds 0δ<ρ1,0\leq \delta \lt \rho\leq 1, ρ1δ.\rho\geq 1-\delta.

 

2. Some preliminary information

• In the late 1980 { H. Donnelly and C. Fefferman} in their celebrated Inventiones’ paper proved the doubling property

supB(2R)ϕeC1λ+C2supB(R)ϕ \sup_{B(2R)}|\phi|\leq e^{C_1\lambda +C_2} \sup_{B(R)}|\phi|

(1)

for any eigenfunction of the Laplacian Δg\Delta_g on M,M, that is, Δgϕ=λ2ϕ,-\Delta_g \phi=\lambda^2 \phi, where B(2R)B(2R) and B(R)B(R) represent concentric balls (associated to the geodesic distance) where the constants C1C_1 and C2C_2 are independent of R>0,R>0, and depending only on M.M. • Charles Fefferman, Fields medal, 1978.
• The doubling property

supB(2R)κeC1λ+C2supB(R)κ \sup_{B(2R)}|\kappa|\leq e^{C_1\lambda +C_2} \sup_{B(R)}|\kappa|

(2)

remains valid for sums of eigenfunctions

κ=λkλakϕkspan{ϕk:λk2λ2} \kappa=\sum_{\lambda_k\leq \lambda}a_k\phi_k\in \textnormal{span}\{\phi_k:\lambda_k^2\leq \lambda^2\}

of the positive Laplacian Δg.\Delta_g.

 

3. Another spectral inequality (that implies the Donnelly-Fefferman doubling property

• Let MM be a compact Riemmanian manifold with (or without) smooth boundary M.\partial M. Let (ρj,λj2)(\rho_j,\lambda_j^2) be the corresponding spectral data of the Laplacian Δg:-\Delta_g: Δgρj=λj2ρj.-\Delta_g\rho_j=\lambda_j^2\rho_j. Then, for any non-empty open subset ωM,\omega\subset M, we have the loss of orthogonality estimate

ϰL2(M)C1eC2λϰL2(ω),   ϰspan{ρj:λjλ}. \Vert \varkappa\Vert_{L^2(M)}\leq C_1e^{C_2 {\lambda}}\Vert \varkappa\Vert_{L^2(\omega)},\,\,\,\varkappa\in \textnormal{span}\{\rho_j:\lambda_j\leq \lambda\}.

(3)

Moreover, the growth constant C1eC2λC_1e^{C_2 {\lambda}} is sharp. This inequality was proved by Jerison-Lebeau/Lebeau-Robbiano/Lebeau-Zuazua.

4. The Lebeau-Robbiano result of the null-controllability of the heat equation
• Consequences: let { ω\omega} be a non-empty open subset of M.M. Then, the heat equation for the positive Laplacian Δg\Delta_g

{ut(x,t)+Δgu(x,t)=g(x,t)1ω(x),(x,t)M×(0,T),u(0,x)=u0, \begin{cases}u_t(x,t)+ \Delta_g u(x,t)=g(x,t)\cdot 1_\omega (x) ,& (x,t)\in M\times (0,T), \\u(0,x)=u_0,\end{cases}

is null-controllable at any time T>0,T>0, that is, for any initial condition u0,u_0, there is an input function gL2(M×(0,T))g\in L^2(M\times (0,T))} such that the solution to (4) vanishes in time T,T, that is u(x,T)=0,u(x,T)=0, xM.x\in M.

 

5. Some remarks

• In general pseudo-differential operators are non-local and the use of Carleman estimates, which is the analytical tool by excellence in the proof of the Lebeau-Robbiano spectral inequality and their subsequent generalisations, are not valid.
• It is natural to ask if the doubling property

supB(2R)ϕeC1λ+C2supB(R)ϕ \sup_{B(2R)}|\phi|\leq e^{C_1\lambda +C_2} \sup_{B(R)}|\phi|

(5)

remains valid for sums of eigenfunctions

ϕ=λkλakϕkspan{ϕk:λk2λ2} \phi=\sum_{\lambda_k\leq \lambda}a_k\phi_k\in \textnormal{span}\{\phi_k:\lambda_k^2\leq \lambda^2\}

of the positive elliptic pseudo-differential operators on compact manifolds (with or without boundary).

 

6. A motivating problem

• The extension of the Lebeau-Robbiano/Jerison-Lebeau/Lebeau-Zuazua spectral inequality

ϰL2(M)C1eC2λϰL2(ω),   ϰspan{ρj:λjνλν}. \Vert \varkappa\Vert_{L^2(M)}\leq C_1e^{C_2 {\lambda}}\Vert \varkappa\Vert_{L^2(\omega)},\,\,\,\varkappa\in \textnormal{span}\{\rho_j:\lambda_j^\nu\leq \lambda^\nu\}.

(6)

to positive elliptic pseudo-differential operator E(x,D)E(x,D) of order ν>0,\nu>0, implies the null-controllability for its corresponding diffusion model

{ut(x,t)+E(x,D)u(x,t)=g(x,t)1ω(x),(x,t)M×(0,T),u(0,x)=u0, \begin{cases}u_t(x,t)+ E(x,D) u(x,t)=g(x,t)\cdot 1_\omega (x) ,& (x,t)\in M\times (0,T), \\u(0,x)=u_0,\end{cases}

(7)

at any time T>0.T>0. Here ωM,\omega \subset M, ω,\omega\neq \emptyset, is the controllability sensor. A natural question/motivating problem is to verify if this inequality remains valid for pseudo-differential operators.

 

7. Short overwiew about pseudo-differential operators

Pseudo-differential operators on Rn\Bbb R^n [Kohn+Nirenberg 1965, Hörmander 1967]:

f^(ξ)=Rnf(x) e2πixξ dx,Af(x)=Rne2πixξσA(x,ξ)f^(ξ)dξ, \widehat{f}(\xi) = \int_{\Bbb R^n} f(x)\ {\sf e}^{-2\pi \sf i} x\cdot\xi\ {\rm d}x, \quad Af(x) = \int_{\R^n} {\sf e}^{2\pi \sf i x\cdot\xi} \sigma_A(x, \xi) \widehat{f}(\xi) {\rm d}\xi,

ξαxβσA(x,ξ)Cαβ ξmρα+δβ,ξ=(1+ξ2)1/2,ξRn. \left| \partial_\xi^\alpha \partial_x^\beta \sigma_A(x,\xi) \right| \leq C_{\alpha\beta}\ \langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}, \langle{\xi}\rangle=(1+|\xi|^2)^{1/2}, \xi\in\R^n.

Ψ\PsiDOs on the torus Tn=Rn/Zn:\Bbb T^n=\Bbb R^n/\Bbb Z^n: Fourier coefficients with ξZn\xi\in\mathbb{Z}^n,

\widehat{f}(\xi)= \int_{\Bbb T^n} f(x) {\sf e}^{-{\sf i}2\pi x\cdot\xi} \rm dx, \quad Af(x) = \sum_{\xi\in\Bbb Z^n} {\sf e}^\sf i 2\pi x\cdot\xi \sigma_A(x,{ \xi}) \widehat{f}(\xi),

ξαxβσA(x,ξ)Cαβ ξmρα+δβ,ξZn. \left| \triangle_\xi^\alpha \partial_x^\beta \sigma_A(x,\xi) \right| \leq C_{\alpha\beta}\ \langle\xi\rangle^{ m-\rho|\alpha|+\delta|\beta| }, \xi\in\Bbb Z^n.

 
[Agranovich 1990], [McLean 1991], [Turunen 2000],[Ruzhansky+Turunen, JFAA, 2010].

Ψ\PsiDOs on a compact Lie group GG:
[Ruzhansky+Turunen, Birkhaüser book, 2010]

f^(ξ)=Gf(x) ξ(x) dx,  Af(x)=[ξ]G^dξ Tr(ξ(x) σA(x,ξ) f^(ξ)), \widehat{f}(\xi) = \int_G f(x)\ \xi(x)^\ast\ {\rm d}x, \; Af(x) = \sum_{[\xi]\in\widehat G} d_{\xi} \ {\sf Tr}\left( \xi(x)\ { \sigma_A(x,\xi)}\ \widehat{f}(\xi) \right),

ξαXβσA(x,ξ)opCαβ ξmρα+δβ,  ξG^, ξ=e.v., Δξ=diff.op., . { \|} { \triangle_\xi^\alpha} X^\beta \sigma_A(x,\xi) { \|_{op}} \leq C_{\alpha\beta}\ { \langle\xi\rangle}^{m-\rho|\alpha|+\delta|\beta|},\; {\xi\in \widehat G,} \ \langle{\xi}\rangle =e.v.,\ \Delta_\xi=\textnormal{diff.op.},\ \cdots.

 

8. Pseudo-differential operators on compact manifolds without boundary Kohn-Nirenberg+Hörmander

1. There is a well-known formulation of pseudo-differential operators on compact manifolds, (and so on compact Lie groups) by using symbols defined by charts.
2. If URnU\subset \R^n is open, the symbol a:U×RnC,a:U\times \R^n\rightarrow \mathbb{C}, belongs to the Hörmander class Sρm,δ(U×Rn),S^{ m}_{\rho},\delta({U\times \R^n}), 0ρ,δ1,0\leqslant \rho,\delta\leqslant 1, if for every compact subset KU,K\subset U, the symbol inequalities,

xβξαa(x,ξ)Cα,β,K(1+ξ)mρα+δβ, |\partial_{x}^\beta\partial_{\xi}^\alpha a(x,\xi)|\leqslant C_{\alpha,\beta,K}(1+|\xi|)^{ m} -\rho|\alpha|+\delta|\beta|,

hold true uniformly in xKx\in K and ξRn.\xi\in \R^n. 3. Then, a continuous linear operator A:C0(U)C(U)A:C^\infty_0(U) \rightarrow C^\infty(U) is a pseudo-differential operator of order m,m, of (ρ,δ)(\rho,\delta)-type, if there exists
a function aSρ,δm(U×Rn),a\in S^m_{\rho,\delta}(U\times \R^n), satisfying

Af(x)=Rne2πixξa(x,ξ)(FRnf)(ξ)dξ, Af(x)=\int\limits_{\R^n}e^{2\pi i x\cdot \xi}a(x,\xi)(\mathscr{F}_{\R^n}{f})(\xi)d\xi,

for all fC0(U),f\in C^\infty_0(U), where

(FRnf)(ξ):=Uei2πxξf(x)dx, (\mathscr{F}_{\R^n}{f})(\xi):=\int\limits_Ue^{-i2\pi x\cdot \xi}f(x)dx,

is the Euclidean Fourier transform of ff at ξRn.\xi\in \R^n. 4. The class Sρ,δm(U×Rn)S^m_{\rho,\delta}(U\times \R^n) on the phase space U×Rn,U\times \R^n, is invariant under coordinate changes only if ρ1δ,\rho\geqslant 1-\delta, while a symbolic calculus (closed for products, adjoints, parametrices, etc.) is only possible for δ<ρ\delta \lt \rho and ρ1δ.\rho\geqslant 1-\delta.
5. A:C0(M)C(M)A:C^\infty_0(M)\rightarrow C^\infty(M) is a pseudo-differential operator of order m,m, of (ρ,δ)(\rho,\delta)-type, ρ1δ, \rho\geqslant 1-\delta, if for every local coordinate patch ω:MωMURn,\omega: M_{\omega}\subset M\rightarrow U\subset \R^n, and for every ϕ,ψC0(U),\phi,\psi\in C^\infty_0(U), the operator

Tu:=ψ(ω1)Aω(ϕu),  uC(U),1 Tu:=\psi(\omega^{-1})^*A\omega^{*}(\phi u),\,\,u\in C^\infty(U), ^1

is a pseudo-differential operator with symbol in Sρ,δm(U×Rn). S^m_{\rho,\delta}(U\times \R^n). 1^1 As usually, ω\omega^{*} and (ω1)(\omega^{-1})^* are the pullbacks induced by the maps ω\omega and ω1,\omega^{-1}, respectively.}

 

9. Pseudo-differential operators on compact Lie groups (Ruzhansky-Turunen classes)

9.1. Basics on Representation theory
• Unitary representation ξ\xi of a group GG is ξ:GL(Hξ)\xi:G\to \mathcal{L}(\mathcal{H}_{\xi}), where Hξ\mathcal{H}_{\xi} is a Hilbert representation space, such that ξ(x)=ξ(x)1\xi(x)^*=\xi(x)^{-1} (unitary) and {ξ(xy)=ξ(x) ξ(y)\xi(xy)=\xi(x)\ \xi(y)} (preserves group structure).
• It is irreducible if ξξ1ξ2\xi\not=\xi_{1}\oplus\xi_{2} for some unitary representations ξ1,ξ2\xi_{1},\xi_{2}.
• If GG is compact, it is enough to consider finite-dimensional Hξ\mathcal{H}_{\xi}, i.e. ξ:GCdξ×dξ\xi:G\to {\mathbb C}^{d_{\xi}\times d_{\xi}} for dξ=dimHξd_{\xi}=\dim \mathcal{H}_{\xi} the dimension of ξ\xi.

• Example: For Tn\mathbb{T}^n, ξk(x)=e2πixk\xi_k(x)=e^{2\pi i x\cdot k}, kZnk\in\mathbb{Z}^n. Then ξk:TnC1×1\xi_k:\mathbb{T}^n\to\mathbb{C}^{1\times 1}, dξk=1d_{\xi_k}=1.
• The unitary dual G^\widehat{G} is defined (omitting equivalent classes) as

G^\widehat{G} = continuous irreducible unitary representations of G

• Fourier coefficient f^(ξ)\widehat{f}(\xi) of fL1(G)f \in L^{1}(G) at ξG^\xi \in \widehat{G} is

f^(ξ)=Gf(x) ξ(x) dx. \widehat{f}(\xi) = \int_G f(x)\ \xi(x)^*\ {\rm d}x.

Note that f^(ξ)L(Hξ)\widehat{f}(\xi)\in\mathcal{L}(\mathcal{H}_{\xi}) is now an operator; a matrix if GG is compact.

• We define the weight ξ\langle{\xi}\rangle to measure the growth of the Fourier coefficients. This is essential if talking about function spaces and about the symbol classes associated to the unique bi-invariant Riemannian structure on GG (Laplacian).

For each ξG^\xi\in\widehat{G}, we have for the Laplacian:

LGξ=λξ2ξ -{\mathcal{L}}_{G} \xi=\lambda_\xi^2 \xi

In other words,

LGξij(x)=λξ2ξij(x),1i,jdξ. -{\mathcal{L}}_G \xi_{ij}(x)=\lambda_{\xi}^{2}\xi_{ij}(x),\quad 1\leq i,j\leq d_\xi.

We define

ξ:=(1+λξ2)1/2 \langle {\xi}\rangle :=(1+\lambda_{\xi}^2)^{1/2}

These are the eigenvalues of the first order elliptic operator (1LG)1/2(1-\mathcal{L}_{G})^{1/2}, and we note that ξ\langle {\xi}\rangle has here multiplicity dξ2.d_{\xi}^{2}.

9.2. Operators on compact Lie groups

• If A:C(G)C(G)A:C^\infty(G)\to C^\infty(G) cont. \& linear, then we can define its symbol as

(x,ξ)σA(x,ξ),σA(x,ξ):=ξ(x)(Aξ)(x), (x,\xi)\mapsto \sigma_A(x,\xi),\quad \sigma_A(x,\xi) := \xi(x)^* (A\xi)(x),

where (Aξ)ij=A(ξij)(A\xi)_{ij}=A(\xi_{ij}) acts on components. This (full) symbol of AA is matrix-valued: σA(x,ξ)Cdξ×dξ\sigma_A(x,\xi)\in\mathbb{C}^{d_\xi\times d_\xi}. Then we can show that

Af(x)=ξG^dξTr(ξ(x)σA(x,ξ)f^(ξ)). Af(x) = \sum_{\xi\in\widehat{G}} d_\xi {\rm Tr}\left( \xi(x) \sigma_A(x,\xi) \widehat{f}(\xi) \right).

This symbol is well-defined
on G×G^G\times\widehat{G} (non-commutative phase space).

There are many familiar features, e.g. if

Af(x)=GK(x,y)f(y)dy=Gf(y)RA(x,y1x) dy, Af(x)=\int_G K(x,y) f(y) dy=\int_G f(y) R_A(x,y^{-1}x)\ dy,

then σA(x,ξ)=GRA(x,y) ξ(y)dy\sigma_A(x,\xi)=\int_G R_A(x,y)\ \xi(y)^* dy (i.e. symbol is F.T. of the kernel).

We have (full) symbolic calculus for this quantization, and (!) with formulae resembling the familiar formulae on Rn\R^n.

• As usual, Ψρ,δm(G)\Psi^m_{\rho,\delta}(G) is the Hörmander class of pseudo-differential operators on GG, i.e. such that their localisations have symbols in Sρ,δm(Rn)S^m_{\rho,\delta}(\R^n).

Let ξ\langle{\xi}\rangle be the eigenvalue of (ILG)1/2(I-\mathcal{L}_G)^{1/2}, LG\mathcal{L}_G Laplacian, corresponding to ξ\xi.

Now, we define the class of symbols σASρ,δm(G×G^)\sigma_A\in S^m_{\rho,\delta}(G\times \widehat{G}) by

ξαXxβσA(x,ξ)opCαβξmρα+δβ \| \triangle_\xi^\alpha X^{\beta}_{x} \sigma_A(x,\xi)\|_{op} \le C_{\alpha\beta} \langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}

Independent of the choice of a strongly admissible collection for 1δ<ρ1.1\leq \delta \lt \rho\leq 1.

Ruzhansky-Turunen-Wirth Theorem: Let 0δ<ρ1,0\leq \delta \lt \rho\leq 1, and ρ1δ.\rho\geq 1-\delta. Then, AΨρ,δm(G)A\in\Psi^m_{\rho,\delta}(G) if and only if σASρ,δm(G×G^).\sigma_A\in S^m_{\rho,\delta}(G\times \widehat{G}).

 

10. Elliptic pseudo-differential operators on compact Lie groups and on general compact manifolds

• Let MM be a closed manifold.
We say that an operator AΨρ,δm(M)A\in \Psi^m_{\rho,\delta}(M) is elliptic of order mR,m\in \R, if in any local coordinate system U,U, and for any compact subset KU,K\subset{U}, its symbol satisfies the inequality

C1(1+θ)ma(x,θ)C2(1+θ)m,θR, C_1 (1+|\theta|)^m\leq |a(x,\theta)|\leq C_2 (1+|\theta|)^m, |\theta|\geq R,

(8)

for some R>0,R>0, uniformly in xK,x\in K, and θRn.\theta\in \R^n. • We say that a matrix-valued symbol a:G×G^C×,a:G\times \widehat{G}\rightarrow \cup_{\ell}\mathbb{C}^{\ell\times \ell}, is elliptic of order mRm\in \R if
R>0,a(x,[θ])GL(dθ,C)\exists R>0,\, a(x,[\theta])\in \textnormal{GL}(d_\theta,\mathbb{C}) is an invertible matrix for all θR\langle \theta\rangle\geq R.
– The following symbol inequality holds uniformly in xG,x\in G, when θR:\langle \theta\rangle\geq R:

(a(x,[θ]))1opCθm. \|( a(x,[\theta]))^{-1}\|_{\textnormal{op}}\leqslant C\langle\theta\rangle^{-m}.

 

11. Main results: Spectral inequalities for pseudo-differential operators and applications to control theory

• D. Cardona, 2022. Let ν>0,\nu>0, and let 0δ<ρ10\leq \delta \lt \rho\leq 1 be such that ρ1δ.\rho\geq 1-\delta. Let E(x,D)Ψρ,δν(M)E(x,D)\in \Psi^\nu_{\rho,\delta}(M) be an elliptic positive pseudo-differential operator of order ν>0.\nu>0. Let (x,ξ)TM,(x,\xi)\in T^*M, and assume that for any ξ0,\xi\neq 0, E(x,ξ)>0E(x,\xi)>0 is strictly positive. Then, for any non-empty open subset ωM,\omega\subset M, we have

ϰL2(M)C1eC2λϰL2(ω),   ϰspan{ρj:λjλ}. \Vert \varkappa\Vert_{L^2(M)}\leq C_1e^{C_2 {\lambda}}\Vert \varkappa\Vert_{L^2(\omega)},\,\,\,\varkappa\in \textnormal{span}\{\rho_j:\lambda_j\leq \lambda\}.

(9)

• D. Cardona, 2022. For any R>0R>0 let B(x,R)B(x,R) be a ball defined by the geodesic distance, of radius R>0R>0 and centred at x.x. Then,

supB(x,2R)ϰeC1λ+C2supB(x,R)ϰ,   ϰspan{ρj:λjλ}, \sup_{B(x,2R)}|\varkappa|\leq e^{C_1' {\lambda}+C_2'} \sup_{B(x,R)}|\varkappa|,\,\,\,\varkappa\in \textnormal{span}\{\rho_j:\lambda_j\leq \lambda\},

(10)

with C1=C1(R)C_1'=C_{1}'(R) and C2=C2(R)C_2'=C_2'(R) are dependent only on the radius R>0R>0 but not on ϰ.\varkappa. • D. Cardona, 2022. Let ν>0,\nu>0, and let 0δ<ρ10\leq \delta \lt \rho\leq 1 be such that ρ1δ.\rho\geq 1-\delta. Let E(x,D)Ψρ,δν(M)E(x,D)\in \Psi^\nu_{\rho,\delta}(M) be a positive elliptic pseudo-differential operator of order ν>0.\nu>0. Let (x,ξ)TM,(x,\xi)\in T^*M, and assume that for any ξ0,\xi\neq 0, E(x,ξ)>0E(x,\xi)>0 is strictly positive. Then,
for any α>1/ν,\alpha>1/\nu, the fractional diffusion problem

{ut(x,t)+E(x,D)αu(x,t)=g(x,t)1ω(x),(x,t)M×(0,T),u(0,x)=u0, \begin{cases}u_t(x,t)+ E(x,D)^\alpha u(x,t)=g(x,t)\cdot 1_\omega (x) ,& (x,t)\in M\times (0,T), \\u(0,x)=u_0,\end{cases}

(11)

is null-controllable at any time T>0,T>0, for any non-empty open subset ωM.\omega\subset M. • D. Cardona, J. Delgado, M. Ruzhansky, 2022. Let 0δ<ρ1.0\leq \delta \lt \rho\leq 1. Let AΨρ,δm(G×G^)A\in \Psi^m_{\rho,\delta}(G\times \widehat{G}) be a positive elliptic pseudo-differential operator of order m>0.m>0. Assume that σA(x,ξ)0\sigma_A(x,\xi)\geq 0 for all (x,[ξ])G×G^.(x,[\xi])\in G\times \widehat{G}. Let (ej,λjm),λj0,(e_j,\lambda_j^m), \lambda_j\geq 0, be the corresponding spectral data of A,A, determined by the eigenvalue problem Aej=λjmejAe_j=\lambda_j^me_j with the eigenfunctions eje_j being L2L^2-normalised. Then the following spectral estimates are valid:
– For any non-empty open subset ωG,\omega\subset G, we have

ϰL2(G)C1eC2λϰL2(ω),   ϰspan{ej:λjλ}, \Vert \varkappa\Vert_{L^2(G)}\leq C_1e^{C_2 {\lambda}}\Vert \varkappa\Vert_{L^2(\omega)},\,\,\,\varkappa\in \textnormal{span}\{e_j:\lambda_j\leq \lambda\},

(12)

with C1=C1(ω)C_1=C_1(\omega) and C2=C2(ω)C_2=C_2(\omega) depending on ω,\omega, but not on ϰ.\varkappa. – For any R>0R>0 let B(x,R)B(x,R) be a ball defined by the geodesic distance, of radius R>0R>0 and centred at x.x. Then,

supB(x,2R)ϰeC1λ+C2supB(x,R)ϰ,   ϰspan{ej:λjλ}, \sup_{B(x,2R)}|\varkappa|\leq e^{C_1' {\lambda}+C_2'} \sup_{B(x,R)}|\varkappa|,\,\,\,\varkappa\in \textnormal{span}\{e_j:\lambda_j\leq \lambda\},

(13)

with C1=C1(R)C_1'=C_{1}'(R) and C2=C2(R)C_2'=C_2'(R) depending only on the radius R>0R>0 but not on ϰ.\varkappa. \end{itemize}
• D. Cardona, J. Delgado, M. Ruzhansky, 2022. Let AA be a positive and elliptic pseudo-differential operator of order m>0m > 0 in the Hörmander class Ψρ,δm(G×G^)\Psi^ m _{\rho,\delta}(G\times \widehat{G}) and let u0L2(G)u_0\in L^2(G) be an initial datum. Asuma that σA(x,[ξ])0\sigma_A(x,[\xi])\geq 0 for all (x,[ξ])G×G^.(x,[\xi])\in G\times \widehat{G}. Then, for any α>1/m,\alpha>1/ m , the fractional diffusion model

{ut(x,t)+Aαu(x,t)=g(x,t)1ω(x),(x,t)G×(0,T),u(0,x)=u0, \begin{cases}u_t(x,t)+ A^\alpha u(x,t)=g(x,t)\cdot 1_\omega (x) ,& (x,t)\in G\times (0,T), \\u(0,x)=u_0,\end{cases}

(14)

is null-controllable at any time T>0,T>0, that is, there exists an input function g=g(x,t)L2(G)g=g(x,t)\in L^2(G) such that for any xG,u(x,T)=0.x\in G, u(x,T)=0.

References
[1] D. Cardona, Spectral inequalities for elliptic pseudo-differential operators on closed manifolds, arXiv:2209.10690.
[2] D. Cardona, J. Delgado, M. Ruzhansky. Estimates for sums of eigenfunctions of elliptic pseudo-differential operators on compact Lie groups, arXiv:2209.12092.}
[3] H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93, 161–183, (1988).
[4] V. Fischer, M. Ruzhansky. Quantization on nilpotent Lie groups, Progress in Mathematics, Vol. 314, Birkhauser, 2016. xiii+557pp.
[5] D. Jerison, G. Lebeau. Nodal sets of sums of eigenfunctions. Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Math, 223–239, (1999).
[6] L, Hörmander. The Analysis of the linear partial differential operators} Vol. III. Springer-Verlag, (1985).
[7] G. Lebeau, L. Robbiano, Controle exact de l’equation de la chaleur, Comm. Partial Diff. Equations., 20, 335–356, (1995).
[8] G. Lebeau, E. Zuazua. Null-Controllability of a System of Linear Thermoelasticity. Arch. Rational Mech. Anal. 141(4), 297–329, (1998).
[9] L. Miller. On the controllability of anomalous diffusions generated by the fractional Laplacian. Math. Control Signals Systems 18(3), 260–271, (2006).
[10] L. Miller. On the cost of fast controls for thermoelastic plates, Asymptot. Anal. 51, 93–100, (2007).
[11] M. Ruzhansky, V. Turunen. Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics, Birkhauser, Basel, 2010. 724pp.