Skip to content
  • Publications
  • Jobs
  • enzuazua
  • Seminars
  • Events Calendar
cmc.deusto.eus
  • Home
  • About us
    • About the Chair
    • Head of the Chair
    • Team
    • Past Members
  • Research
    • Projects
    • ERC – DyCon
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications Relased
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Past Events
    • News
    • Seminars
    • Courses
    • enzuazua
    • Gallery
  • Jobs
  • Contact

Identification problems

  • Home
  • Identification problems

Analysis and numerics solvability of backward-forward conservation laws

Tags: Backward-forward method, Conservation Laws, Identification problems, Non-smooth optimization problem, Wave-front tracking algorithm, Weak-entropy solutions
Thibault Liard, Enrique Zuazua. Analysis and numerics solvability of backward-forward conservation laws. (2020) Abstract. In this paper, we study the problem of initial data identification for the one-dimensional Burgers equation.…
Read More

Last Publications

Control of neural transport for normalizing flows

A Two-Stage Numerical Approach for the Sparse Initial Source Identification of a Diffusion-Advection Equation

Gaussian Beam ansatz for finite difference wave equations

Long-time convergence of a nonlocal Burgers’ equation towards the local N-wave

Optimal design of sensors via geometric criteria

  • Control of neural transport for normalizing flows
  • A Two-Stage Numerical Approach for the Sparse Initial Source Identification of a Diffusion-Advection Equation
  • Gaussian Beam ansatz for finite difference wave equations
  • Optimal design of sensors via geometric criteria
  • Eigenvalue bounds for the Gramian operator of the heat equation
  • Control of neural transport for normalizing flows
  • A Two-Stage Numerical Approach for the Sparse Initial Source Identification of a Diffusion-Advection Equation
  • Gaussian Beam ansatz for finite difference wave equations
  • Optimal design of sensors via geometric criteria
  • Eigenvalue bounds for the Gramian operator of the heat equation
Copyright 2016 - 2023 — cmc.deusto.eus. All rights reserved. Chair of Computational Mathematics, Deusto Foundation - University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad