Optimal control of mixed local-nonlocal elliptic PDE with singular boundary-exterior data

Optimal control of mixed local-nonlocal elliptic PDE with  singular boundary-exterior data

Spain 12.08.2022

Optimal control of mixed local-nonlocal elliptic PDE with singular boundary-exterior data

Author: Jean-Daniel Djida

In this post we are interested in optimal control problem of the mixed local-nonlocal elliptic problem. We prove well-posedness and regularity results of the associated elliptic with singular boundary-exterior data.
Secondly, we show the existence of optimal solutions of associated optimal control problem, and we characterize the optimality conditions.

 

1 Mixed local-nonlocal problem

Let ΩRN\Omega\subset\mathbb{R}^{N} (N1N\ge 1) be a bounded domain with a smooth boundary Ω\partial \Omega. We consider the following initial-boundary-exterior value problem:

{Lψ=0in  Ω,ψ=u1on  Ω,ψ=u2in  (RNΩ),(1.1) \begin{cases} \mathscr{L}\psi = 0 & { in }\; \Omega,\\ \psi=u_1& { on }\;\partial \Omega,\\ \psi = u_2 & { in }\; (\mathbb{R}^{N}\setminus \Omega), \\ \end{cases}  (1.1)

Here, the operator L\mathscr{L} is given by

LΔ+(Δ)s,0<s<1,(1.2) \mathscr{L} \coloneqq - \Delta + (-\Delta)^{s},\qquad 0 \lt s \lt 1,  (1.2)

In (1.2), Δ\Delta is the classical Laplacian and (Δ)s(-\Delta)^s (0<s<10 \lt s \lt 1) denotes the fractional Laplace operator given formally by the following singular integral:

(Δ)sψ=P.V.  CN,sRNψ(x)ψ(y)xyN+2s  dy, (-\Delta)^s\psi= {P.V.}\;C_{N,s}\int_{\mathbb{R}^{N}}\frac{\psi(x)-\psi(y)}{|x-y|^{N+2s}}\;dy,

where CN,sC_{N,s} is a normalization constant depending only on NN and ss and given by

CN,ss22sΓ(2s+N2)πN2Γ(1s). C_{N,s}\coloneqq \frac{s2^{2s}\Gamma\left(\frac{2s+N}{2}\right)}{\pi^{\frac{N}{2}}\Gamma(1-s)}.

Integro-differential equations of the form (1.1) arise naturally in the study of stochastic processes with jumps. The generator of an NN-dimensional Lévy process has the following general structure:

Lu=αi,jaijiju+γjbjju+βRN(u(x+ξ)u(x)ξu(x))χB1(ξ)dν(ξ),(1.3) \mathscr{L} u = \alpha \sum_{i, j} a_{i j} \partial_{i j} u+\gamma \sum_{j} b_{j} \partial_{j} u+ \beta \int_{\mathbb{R}^{N}}(u(x+\xi)-u(x)- \xi \cdot \nabla u(x)) \chi_{B_{1}}(\xi) \mathrm{d} \nu(\xi),  (1.3)

where ν\nu is the Lévy measure and satisfies RNmin{1,ξ2}dν(ξ)<+\int_{\mathbb{R}^{N}} \min \left\{1,|\xi|^{2}\right\} \mathrm{d} \nu(\xi) \lt +\infty, and χB1\chi_{B_{1}} is the usual characteristic function of the unit ball B1B_{1} of RN\mathbb{R}^{N}. The first term of (1.3) on the right-hand side corresponds to the diffusion, the second one to the drift, and the third one to the jump part.

For the above reasons, the study of the operator L\mathscr{L} with diffusion, drift and jump components appears quite intriguing. Here, we focus on the case LαΔ+(Δ)s\mathscr{L} \coloneqq - \alpha \Delta + (-\Delta)^{s}, obtained from (1.3) by setting aij=α1δija_{i j}=\alpha^{-1} \delta_{i j}, γ=0\gamma = 0 and ν\nu given by the symmetric kernel β1xξN2s\beta^{-1}|x-\xi |^{-N-2s}.

Indeed, the particular case when ν=0\nu=0, namely when there are no jumps, L\mathscr{L} turns into a classical second-order differential operator. Foremost, for γ=0\gamma = 0, the operator L\mathscr{L} reduced to the Laplace operator obtained from the brownian motion (see Figure 1). Here, ψ(x)=E(u1(Bτx0))=E( pay off )\psi(x)=\mathbb{E}\left(u_{1}\left(B_{\tau}^{x_{0}}\right)\right)=\mathbb{E}(\text { pay off }) solves:

{Δψ=0in  Ω,ψ=u1on  Ω, \begin{cases} -\Delta \psi = 0 & { in }\; \Omega,\\ \psi=u_1 & { on }\;\partial \Omega, \end{cases}

On the other hand, the case when the process has no diffusion and no drift has attracted a lot of attention recently. In particular, one of the most prominent operators belonging to this class is the fractional Laplacian (Δ)s(-\Delta)^{s}, which turns out to be the infinitesimal generator of isotropic ss-stable Lévy processes. Here, ψ(x)=E(u2(Xτχ0))=E( pay off )\psi(x) =\mathbb{E}\left(u_{2}\left(X_{\tau}^{\chi_{0}}\right)\right)=\mathbb{E}(\text { pay off }) solves:

{(Δ)sψ=0in  Ω,ψ=u2in  (RNΩ), \begin{cases} (-\Delta)^{s}\psi = 0 & { in }\; \Omega,\\ \psi = u_2 & { in }\; (\mathbb{R}^{N}\setminus \Omega), \\ \end{cases}


Figure 1. On the left, brownian motion leading by local operator and on the right we have Lévy process leading to nonlocal operator.

Btx0\mathrm{B}_{\mathrm{t}}^{\mathrm{x}_{0}} is a brownian motion in RN\mathbb{R}^{\mathrm{N}} starting at x0x_{0}; Xtx0X_{t}^{x_{0}} a Lévy process with discontinuous sample paths, and τ\tau the first time at which Xtx0X_{t}^{x_{0}} is in RNΩ\mathbb{R}^{N} \setminus \Omega.

 

Goal:

For non-smooth boundary-exterior data, we shall introduce the notion of solutions by transposition (or very-weak solutions) of (1.1), study their existence and regularity. Next, in this direction reads that if u1L2(Ω)u_1\in L^2(\partial \Omega), u2L2(RNΩ)u_2\in L^2(\mathbb{R}^{N}\setminus \Omega) and 0<s3/40 \lt s\le 3/4, then the associated very-weak solution ψ\psi of (1.1) belongs to H1/2(Ω)L2(RN)H^{1/2}(\Omega)\cap L^2(\mathbb{R}^{N}). Finally, study the existence of optimal solutions to optimal control problems involving the mixed operator L \mathscr{L} with singular Dirichlet boundary-exterior data, and to characterize the associated optimality conditions. More precisely, we shall consider the following two different optimal control problems:

min(u1,u2)ZadJ((u1,u2)),(1.4) \min_{(u_1,u_2)\in \mathcal{Z}_{ad}} \mathcal{J}((u_1,u_2)),  (1.4)

subject to the constraint that the state ψψ(u1,u2)\psi\coloneqq \psi(u_1,u_2) solves the parabolic system (1.1). We recall that the control (u1,u2)Zad(u_1,u_2) \in \mathcal{Z}_{ad} with Zad\mathcal{Z}_{ad} being a closed and convex subset of ZDL2(Ω)×L2(R Ω)Z_{D}\coloneqq L^2(\partial \Omega) \times L^{2}(\mathbb{R} \ \Omega), which is endowed with the norm given by

(u1,u2)ZD=(u1L2(Ω)2+u2L2(RNΩ)2)12. \|(u_{1},u_{2})\|_{ Z_{D}}=\left(\|u_{1}\|^2_{L^2(\partial \Omega)}+\|u_{2}\|^2_{ L^{2}(\mathbb{R}^{N}\setminus \Omega)}\right)^{\frac 12}.

The functional J\mathcal{J} is given by

J(u1,u2)12ψ((u1,u2))zd1L2(Q)2+β2(u1,u2)ZD2(1.5) \mathcal{J}(u_1,u_2)\coloneqq \frac{1}{2}\|\psi((u_{1},u_{2}))-z_d^1\|_{L^2(Q)}^2 + \frac{\beta}{2}\|(u_{1},u_{2})\|^{2}_{\mathcal{Z} _{D}}  (1.5)

where β>0\beta>0 is a real number, zd1L2(Q)z_d^1\in L^2(Q) , zd2H1(Ω)z_d^2\in H^{-1}(\Omega),
and

ϕH1(Ω)2:=(ΔD)1ϕ,ϕH01(Ω),H1(Ω). \|\phi\|^2_{H^{-1}(\Omega)}:=\langle (-\Delta_D)^{-1}\phi,\phi\rangle_{H^1_0(\Omega),H^{-1}(\Omega)}.

Here, ΔD-\Delta_D is the realization in L2(Ω)L^2(\Omega) of the Laplace operator Δ-\Delta with the zero Dirichlet boundary condition.

 

2 Notations and Preliminaries

Let ΩRN\Omega\subset\mathbb{R}^{N} be an arbitrary open set. Given 0<s<10 \lt s \lt 1 a real number, we let

Hs(Ω){wL2(Ω):  ΩΩw(x)w(y)2xyN+2s  dxdy<}, H^{s}(\Omega)\coloneqq \left\{w \in L^2(\Omega):\;\int_{\Omega}\int_{\Omega}\frac{|w(x)-w(y)|^2}{|x-y|^{N+2s}}\;\mathrm{d}x\mathrm{d}y\lt \infty\right\},

and we endow it with the norm defined by

wHs(Ω)(Ωw(x)2  dx+ΩΩw(x)w(y)2xyN+2s  dxdy)12. \|w\|_{H^{s}(\Omega)}\coloneqq\left(\int_{\Omega}|w(x)|^2\;\mathrm{d}x+ \int_{\Omega}\int_{\Omega}\frac{|w(x)-w(y)|^2}{|x-y|^{N+2s}}\;\mathrm{d}x\mathrm{d}y\right)^{\frac 12}.

We set

H0s(Ω){wHs(RN):  w=0  in  RNΩ}. H_0^{s}(\Omega)\coloneqq\Big\{w\in H^{s}(\mathbb{R}^{N}):\;w=0\; { in }\;\mathbb{R}^{N}\setminus\Omega\Big\}.

Then, H0s(Ω)H_0^{s}(\Omega) endowed with the norm

wH0s(Ω)=(RNRNw(x)w(y)2xyN+2s  dxdy)1/2,(2.1) \|w\|_{H_0^{s}(\Omega)}=\left(\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}} \frac{|w(x)-w(y)|^2}{|x-y|^{N+2s}}\;\mathrm{d}x\, \mathrm{d}y\right)^{1/2},  (2.1)

is a Hilbert space. We let Hs(Ω)(H0s(Ω))H^{-s}(\Omega)\coloneqq (H_0^s(\Omega))^\star be the dual space of H0s(Ω)H_0^s(\Omega) with respect to the pivot space L2(Ω)L^2(\Omega), so that we have the following continuous and dense embeddings:

H0s(Ω)continuousembeddedinL2(Ω)continuousembeddedinHs(Ω).(2.2) H_0^{s}(\Omega) continuous embedded in L^2(\Omega) continuous embedded in H^{-s}(\Omega).  (2.2)

Next, for φHs(RN)\varphi\in H^{s}(\mathbb{R}^{N}) we introduce the {\em nonlocal normal derivative Ns\mathcal N_s} given by

Nsφ(x)CN,sΩφ(x)φ(y)xyN+2s  dy,    xRNΩ.(2.3) \mathcal N_{s}\varphi(x)\coloneqq C_{N,s}\int_{\Omega}\frac{\varphi(x)-\varphi(y)}{|x-y|^{N+2s}}\; \mathrm{d}y,~~~~x\in\mathbb{R}^{N}\setminus\overline{\Omega}.  (2.3)

It is worthwhile noticing that the operator Ns\mathcal N_s maps Hs(RN)H^s(\mathbb{R}^{N}) into Hlocs(RNΩ)H_{\rm loc}^s(\mathbb{R}^N\setminus\overline{\Omega}).
Furthermore, if uH01(Ω)u\in H_0^1(\Omega) and (Δ)suL2(Ω)(-\Delta)^s u\in L^2(\Omega), then NsuL2(RNΩ)\mathcal N_su\in L^2(\mathbb{R}^N\setminus\overline{\Omega}), and there is a constant C>0C>0 such that

NsuL2(RNΩ)CuH01(Ω).(2.4) \|\mathcal N_su\|_{L^2(\mathbb{R}^N\setminus\overline{\Omega})}\le C\|u\|_{H_0^1(\Omega)}.  (2.4)

To introduce the notion of solution of our problem (1.1), we need the following integration by parts formula.

Let φHs(RN)\varphi\in H^{s}(\mathbb{R}^{N}) be such that (Δ)sφL2(Ω)(-\Delta)^s \varphi\in L^2(\Omega) and NsφL2(RNΩ)\mathcal N_s\varphi\in L^2(\mathbb{R}^N\setminus\overline{\Omega}). Then, for every ψHs(RN)\psi\in H^{s}(\mathbb{R}^{N}), the identity

CN,s2R2N(RNΩ)2(φ(x)φ(y))(ψ(x)ψ(y))xyN+2s  dxdy=Ωψ(Δ)sφ  dx+RNΩψNsφ  dx \frac{C_{N,s}}{2}\int\int_{\mathbb{R}^{2N}\setminus(\mathbb{R}^{N}\setminus \Omega)^2} \frac{(\varphi(x)-\varphi(y))(\psi(x)-\psi(y))}{|x-y|^{N+2s}}\;\mathrm{d}x\, \mathrm{d}y =\int_{\Omega}\psi(-\Delta)^s\varphi\;\mathrm{d}x+\int_{\mathbb{R}^{N}\setminus \Omega}\psi\mathcal N_s \varphi\;\mathrm{d}x

holds. Observing that

R2N(RNΩ)2=(Ω×Ω)(Ω×(RNΩ))((RNΩ)×Ω), \mathbb{R}^{2N}\setminus(\mathbb{R}^{N}\setminus\Omega)^2=(\Omega\times\Omega)\cup (\Omega\times(\mathbb{R}^{N}\setminus\Omega))\cup((\mathbb{R}^{N}\setminus\Omega)\times\Omega),

we have that if φ=0\varphi=0 in RNΩ\mathbb{R}^{N}\setminus \Omega or ψ=0\psi=0 in RNΩ\mathbb{R}^{N}\setminus \Omega, then

R2N(RNΩ)2(φ(x)φ(y))(ψ(x)ψ(y))xyN+2sdxdy=RNRN(φ(x)φ(y))(ψ(x)ψ(y))xyN+2sdxdy. \int\int_{\mathbb{R}^{2N}\setminus(\mathbb{R}^{N}\setminus\Omega)^2} \frac{(\varphi(x)-\varphi(y))(\psi(x)-\psi(y))}{|x-y|^{N+2s}}\mathrm{d}x\,\mathrm{d}y =\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{(\varphi(x)-\varphi(y))(\psi(x)-\psi(y))}{|x-y|^{N+2s}}\mathrm{d}x\,\mathrm{d}y.

Throughout the remainder of the note, we shall let the bilinear form F:H0s(Ω)×H0s(Ω)R\mathcal F:H_0^{s}(\Omega)\times H_0^{s}(\Omega)\to\mathbb{R} be given by

F(φ,ψ)CN,s2RNRN(φ(x)φ(y))(ψ(x)ψ(y))xyN+2s  dxdy.(2.5) \mathcal{F}(\varphi,\psi)\coloneqq \frac{C_{N,s}}{2} \int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{(\varphi(x)-\varphi(y))(\psi(x)-\psi(y))}{|x-y|^{N+2s}}\;\mathrm{d}x\, \mathrm{d}y.  (2.5)

Next, we introduce the classical first order Sobolev space

H1(Ω):={uL2(Ω):  Ωu2  dx<} H^1(\Omega):=\left\{u\in L^2(\Omega):\;\int_{\Omega}|\nabla u|^2\;\mathrm{d}x \lt \infty\right\}

which is endowed with the norm defined by

uH1(Ω)=(Ωu2  dx+Ωu2  dx)12. \|u\|_{H^1(\Omega)}=\left(\int_{\Omega}|u|^2\;\mathrm{d}x+\int_{\Omega}|\nabla u|^2\;\mathrm{d}x\right)^{\frac 12}.

In order to study the solvability of (1.1), we shall also need the following function space

H01(Ω){wH1(RN):w0inRNΩ},(2.6) H_0^1(\Omega) \coloneqq \Big\{w \in H^1(\mathbb{R}^{N}) : w \equiv 0 in \mathbb{R}^{N}\setminus \Omega \Big\},  (2.6)

which is a (real) Hilbert space endowed with the scalar product

Ωwφdx, \int_{\Omega} \nabla w\cdot\nabla \varphi\,\mathrm{d}x,

and associated norm

φH01(Ω)φL2(Ω).(2.7) \|\varphi\|_{H_0^1(\Omega)}\coloneqq \|\nabla \varphi\|_{L^2(\Omega)}.  (2.7)

Furthermore, the classical Poincar\'{e} inequality holds in H01(Ω)H_0^1(\Omega). That is, there is a constant C>0C > 0 such that

φL2(Ω)CφH01(Ω)for allφH01(Ω).(2.8) \|\varphi\|_{L^2(\Omega)} \leq C\,\|\varphi\|_{H_0^1(\Omega)}\qquad \text{for all} \varphi\in H_0^1(\Omega).  (2.8)

We shall denote by H1(Ω)H^{-1}(\Omega) the dual space of H01(Ω)H_0^1(\Omega) with respect to the pivot space L2(Ω)L^2(\Omega) so that we have the following continuous and dense embeddings:

H01(Ω)continuousembeddedinL2(Ω)continuousembeddedinH1(Ω). H_0^{1}(\Omega) continuous embedded in L^2(\Omega) continuous embedded in H^{-1}(\Omega).

Here also, if Ω\Omega is bounded and has a Lipschitz continuous boundary, then by [4, Chapter 1]

H01(Ω)=D(Ω)H1(Ω). H_0^1(\Omega)=\overline{\mathcal D(\Omega)}^{H^1(\Omega)}.

In addition, under the same assumption on Ω\Omega, every function uH1(Ω)u\in H^1(\Omega) has a trace uΩu|_{\partial \Omega} that belongs to H1/2(Ω)H^{1/2}(\partial \Omega), and the mapping trace

H1(Ω)H12(Ω),    uuΩ(2.9) H^1(\Omega)\to H^{\frac 12}(\partial \Omega),\;\; u\mapsto u|_{\partial \Omega}  (2.9)

is continuous and surjective.

Throughout the remainder of the paper, without any mention, we shall assume that ΩRN\Omega\subset\mathbb{R}^{N} is a bounded domain with a smooth boundary Ω\partial \Omega. Under this assumption, we have the following continuous and dense embedding for every 0<s<10 \lt s \lt 1 (see e.g. [4]):

H01(Ω)continuousembeddedinH0s(Ω).(2.10) H_0^1(\Omega) continuous embedded in H_0^s(\Omega).  (2.10)

In view of (2.7) and (2.10), we can deduce that

(φ,ψ)H01(Ω):=F(φ,ψ)+Ωφψdx(2.11) (\varphi,\psi)_{H_0^1(\Omega)}:=\mathcal{F}(\varphi,\psi)+ \int_\Omega \nabla \varphi\cdot\nabla \psi \, \mathrm{d}x  (2.11)

defines a scalar product on H01(Ω)H_0^1(\Omega) with associated norm

φH01(Ω)(F(φ,φ)+Ωφ2dx)12.(2.12) \|\varphi\|_{H_0^1(\Omega)}\coloneqq \left(\mathcal{F}(\varphi,\varphi)+ \int_\Omega |\nabla \varphi|^2\, \mathrm{d}x\right)^{\frac 12}.  (2.12)

The norm given in (2.12) is equivalent to the one given in (2.7).

 

3 Well-posedness

In the part of this post we are interested in establishing some existence, uniqueness and regularity results of the state equation (1.1)
that will be needed in the proof of the existence of minimizers to the optimal control problem (1.4). We start with the following non-homogeneous Dirichlet problem associated with the operator L\mathscr{L}, as defined in (1.2). That is,

{Δw+(Δ)sw=f    in  Ω,w=g1on  Ω,w=g2in  RNΩ.(3.1) \begin{cases} -\Delta w + (-\Delta)^{s}w = f\;\;& { in }\;\Omega,\\ w=g_1& { on }\;\partial \Omega,\\ w=g_2& { in }\;\mathbb{R}^{N}\setminus \Omega. \end{cases}  (3.1)

To introduce our notion of solutions to the system (3.1), we start with the simple case g1=0g_1=0 on Ω\partial \Omega and g2=0g_2=0 in RNΩ\mathbb{R}^{N}\setminus \Omega.

 

Definition 3.1.

Let fH1(Ω)f\in H^{-1}(\Omega), g2=0g_2=0 in RNΩ\mathbb{R}^{N}\setminus \Omega and g1=0g_1=0 on Ω\partial \Omega. A function wH01(Ω)w\in H_0^1(\Omega) is said to be a \emph{weak solution of} (3.1) if for every function φH01(Ω)\varphi\in H_0^1(\Omega), the identity

Ωwφdx+F(w,φ)=f,φH1(Ω),H01(Ω)(3.2) \int_{\Omega} \nabla w\cdot\nabla \varphi\,\mathrm{d}x +\mathcal F(w,\varphi) = \langle f,\varphi\rangle_{H^{-1}(\Omega), H_0^1(\Omega)}  (3.2)

holds, where we recall that the bilinear form F\mathcal F has been defined in (2.5).

The following existence result can be established by using the notion of solution by transposition already discussed in [1, Theorem 1.1].
 

Definition 3.2.

Let fH1(Ω)f\in H^{-1}(\Omega), g1L2(Ω)g_1\in L^2(\partial \Omega), and g2L2(RNΩ)g_2\in L^2(\mathbb{R}^{N}\setminus \Omega). A function wL2(RN)w\in L^2(\mathbb{R}^{N}) is called a very-weak solution of (3.1), if the identity

ΩwLφ  dx=f,φH1(Ω),H01(Ω)Ωg1νφ  dσRNΩg2Nsφ  dx(3.3) \int_{\Omega}w \mathscr{L}\varphi\;\mathrm{d}x= \langle f,\varphi\rangle_{H^{-1}(\Omega), H_0^1(\Omega)} -\int_{\partial \Omega}g_1\partial_\nu\varphi\;\mathrm{d}\sigma-\int_{\mathbb{R}^N\setminus\overline{\Omega}}g_2\mathcal N_s\varphi\;\mathrm{d}x  (3.3)

holds, for every

φV:={φH01(Ω):  LφL2(Ω)}. \varphi\in \mathbb V:=\Big\{\varphi\in H_0^1(\Omega):\; \mathscr{L}\varphi\in L^2(\Omega)\Big\}.

We notice that Definition 3.2 of very-weak solutions makes sense if every function φV\varphi\in\mathbb V satisfies νφL2(Ω)\partial_\nu\varphi \in L^2(\partial \Omega), and NsφL2(RNΩ)\mathcal N_s\varphi\in L^2(\mathbb{R}^N\setminus\overline{\Omega}). We have the following existence theorem.

 

Theorem 3.3 ([1])

Let 0<s3/40 \lt s\le 3/4. Then, for every fH1(Ω)f\in H^{-1}(\Omega), g1L2(Ω)g_1\in L^2(\partial \Omega) and g2L2(RNΩ)g_2\in L^2(\mathbb{R}^{N}\setminus \Omega), the system (3.1) has a unique very-weak solution wL2(RN)w\in L^2(\mathbb{R}^{N}) in the sense of Definition 3.2, and there is a constant C>0C>0 such that

wL2(RN)C(fH1(Ω)+g1L2(Ω)+g2L2(RNΩ)).(3.4) \|w\|_{L^2(\mathbb{R}^{N})}\le C\left(\|f\|_{H^{-1}(\Omega)}+\|g_1\|_{L^2(\partial \Omega)}+\|g_2\|_{L^2(\mathbb{R}^{N}\setminus \Omega)}\right).  (3.4)

In addition, if g1g_1 and g2g_2 are as in Definition 3.2, then the following assertions hold.
• Every weak solution of (3.1) is also a very-weak solution.
• Every very-weak solution of (3.1) that belongs to H1(RN)H^1(\mathbb{R}^{N}) is also a weak solution.

 

Remark 3.4.

We observe the following facts.
(a) We notice that in Definition 3.2 of very-weak solutions, we do not require that the function ww has a well-defined trace on Ω\partial\Omega and that wΩ=g1w|_{\partial\Omega}=g_1, for that reason the regularity of ww cannot be improved.

(b) But if ww has a well-defined trace on Ω\partial\Omega and wΩ=g1L2(Ω)w|_{\partial\Omega}=g_1\in L^2(\partial \Omega), then the regularity of ww can be improved. Indeed, using well-known trace theorems (see e.g. [3]) we can deduce that wL2(RN)H1/2(Ω)w\in L^2(\mathbb{R}^{N})\cap H^{1/2}(\Omega).

(c) If 0<s3/40 \lt s\le 3/4, then VH2(Ω)H01(Ω)\mathbb V\subset H^2(\Omega)\cap H_0^1(\Omega). Indeed, let φV\varphi\in\mathbb V. If 0<s<1/20 \lt s \lt 1/2, it follows from the proof of Theorem 3.3 Step 1 that φH2(Ω)H01(Ω)\varphi\in H^2(\Omega)\cap H_0^1(\Omega). If 1/2s3/41/2\le s\le 3/4, then the proof of Theorem 3.3 Step 1 shows again that φH32sH01(Ω)\varphi\in H^{3-2s}\cap H_0^1(\Omega). Using \cite{G-JFA}, we get that, in fact (Δ)sφL2(Ω)(-\Delta)^s\varphi\in L^2(\Omega). This implies that ΔφL2(Ω)\Delta\varphi\in L^2(\Omega). Thus, φH2(Ω)H01(Ω)\varphi\in H^2(\Omega)\cap H_0^1(\Omega) by using elliptic regularity results for the Laplace operator.

(d) Consider the following Dirichlet problem: Find uH01(Ω)u\in H_0^1(\Omega) satisfying

Lu=f  inΩ. \mathscr{L}u =f\; { in } \Omega.

Due to the presence of the fractional Laplace operator (Δ)s(-\Delta)^s, even if ff is smooth, classical bootstrap argument cannot be used to improve the regularity of the solution uu. This follows from the fact that even if ff is smooth enough, if 1/2s<11/2\le s \lt 1, then a function vH0s(Ω)v\in H_0^s(\Omega) satisfying (Δ)sv=f(-\Delta)^sv=f in Ω\Omega only belongs to ε>0H2sε(Ω)\cap_{\varepsilon>0}H^{2s-\varepsilon}(\Omega) and does not belong to H2s(Ω)H^{2s}(\Omega).

(e) In the case 3/4<s<13/4 \lt s \lt 1, if the function g1g_1 is smooth, says, g1H2s3/2(Ω)g_1\in H^{2s-3/2}(\partial \Omega), then we may replace (3.3) in the definition of very-weak solutions by the expression:

ΩwLφ  dx=f,φH1(Ω),H01(Ω)g1,νφH2s3/2(Ω),H3/22s(Ω) \int_{\Omega}w \mathscr{L}\varphi\;\mathrm{d}x= \langle f,\varphi\rangle_{H^{-1}(\Omega), H_0^1(\Omega)} -\langle g_1,\partial_\nu\varphi\rangle_{H^{2s-3/2}(\partial \Omega),H^{3/2-2s}(\partial \Omega)}

RNΩg2Nsφ  dx -\int_{\mathbb{R}^N\setminus\overline{\Omega}}g_2\mathcal N_s\varphi\;\mathrm{d}x

holds, for every φV\varphi\in\mathbb V. In that case, Theorem 3.3 will be valid for every 0<s<10 \lt s \lt 1. But recall that the main objective of the paper is to study the minimization problem (1.4) and our control function u1u_1 does not enjoy such a regularity.

 

4 Optimal control problems of mixed local-nonlocal elliptic PDE

The aim of this section is to study the optimal control problem (1.4). Recall that
ZDL2(Ω)×L2(RNΩ)Z_{D} \coloneqq L^2(\partial \Omega)\times L^{2}(\mathbb{R}^{N}\setminus \Omega) is endowed with the norm given by

(u1,u2)ZD=(u1L2(Ω)2+u2L2(RNΩ)2)12.(4.1) \|(u_{1},u_{2})\|_{ Z_{D}}=\Big(\|u_{1}\|^2_{L^2(\partial \Omega)}+\|u_{2}\|^2_{ L^{2}(\mathbb{R}^{N}\setminus \Omega)}\Big)^{\frac 12}.  (4.1)

and UD:=L2(Ω)U_{D}:=L^{2}(\Omega). We consider the following controlled equation:

{Δψ+(Δ)sψ=0in  Ω,ψ=u1on  Ω,ψ=u2in  RNΩ,(4.2) \begin{cases} -\Delta \psi + (-\Delta)^{s}\psi = 0 & { in }\; \Omega,\\ \psi=u_1& { on }\;\partial \Omega,\\ \psi = u_2 & { in }\; \mathbb{R}^{N}\setminus \Omega , \end{cases}  (4.2)

where the control (u1,u2)Zad(u_1,u_2) \in \mathcal{Z}_{ad} with Zad\mathcal{Z}_{ad} being a closed and convex subset of ZDZ_{D}.

In view of the above existence result given in Theorem 3.3, the following (solution-map) control-to-state map is well-defined

S:L2(Ω)×L2(RNΩ)L2(Ω),(u1,u2)S(u1,u2)=ψ S: L^{2}(\partial \Omega) \times L^{2}(\mathbb{R}^{N}\setminus \Omega) \rightarrow L^{2}(\Omega), \quad\left(u_{1}, u_{2}\right) \quad \mapsto S\left(u_{1}, u_{2}\right)=\psi

and is linear and continuous. We also notice that for (u1,u2)ZD:=L2(Ω)×L2(RNΩ)\left(u_{1}, u_{2}\right) \in Z_{D}:= L^{2}(\partial \Omega) \times L^{2}(\mathbb{R}^{N}\setminus \Omega), we have that ψS(u1,u2)L2(RN)\psi\coloneqq S\left(u_{1}, u_{2}\right) \in L^{2}\left(\mathbb{R}^{N}\right).

As a result we are interested in the following minimization problems:

min(u1,u2)ZadJ((u1,u2)):=min(u1,u2)Zad(J(S(u1,u2))+β2(u1,u2)ZD2)(4.3) \min _{\left(u_{1}, u_{2}\right) \in Z_{\mathrm{ad}}} \mathcal{J}\left(\left(u_{1}, u_{2}\right)\right):=\min_{\left(u_{1}, u_{2}\right) \in Z_{\mathrm{ad}}}\left(J\left(S\left(u_{1}, u_{2}\right)\right) +\frac{\beta}{2}\left\|\left(u_{1}, u_{2}\right)\right\|_{Z_{D}}^{2}\right)  (4.3)

with

J(S(u1,u2)):=12ψ((u1,u2))zd1L2(Ω)2. J\left(S\left(u_{1}, u_{2}\right)\right):=\frac{1}{2}\left\|\psi\left(\left(u_{1}, u_{2}\right)\right)-z_{\mathrm{d}}^{1}\right\|_{L^{2}(\Omega)}^{2} .

where β>0\beta>0 is a real number, zd1L2(Ω)z_d^1\in L^2(\Omega) , zd2H1(Ω)z_d^2\in H^{-1}(\Omega), ψ:=ψ(u1,u2)\psi:=\psi(u_1,u_2) is the unique very-weak solution of (4.2),
and

ϕH1(Ω)2=(ΔD)1ϕ,ϕH01(Ω),H1(Ω). \|\phi\|^2_{H^{-1}(\Omega)}=\langle (-\Delta_D)^{-1}\phi,\phi\rangle_{H^1_0(\Omega),H^{-1}(\Omega)}.

Here, (ΔD)1ϕ=ϱ(-\Delta_D)^{-1}\phi=\varrho with ϱ\varrho the unique solution of the Dirichlet problem

Δϱ=ϕ  in  Ω  and  ϱ=0  on  Ω. -\Delta \varrho=\phi\; { in }\; \Omega\; { and }\; \varrho = 0\; { on }\; \partial \Omega.

 

4.1 The optimal control problem

In this section we consider the minimization problem (4.3) with the functional J\mathcal{J}. We have the following existence result of optimal solutions.

 

Proposition 4.1

Let 0<s3/40 \lt s\le 3/4, u1L2(Ω)u_1\in L^2(\partial \Omega), and u2L2(RNΩ)u_2\in L^2(\mathbb{R}^N\setminus\Omega). Let Zad\mathcal{Z}_{ad} be a closed and convex subset of ZDZ_{D}, and let ψ=ψ(u1,u2)\psi=\psi(u_1,u_2) satisfy (4.2) in the very-weak sense. Then there exists a unique control (u1,u2)Zad(\overline{u}_{1},\overline{u}_{2})\in \mathcal{Z}_{ad} solution of

inf(v1,v2)ZDJ1((v1,v2)).(4.4) \inf_{ (v_1,v_2)\in Z_{D}} J_1((v_1,v_2)).  (4.4)

 

Proof

Firstly, observe that if (u1,u2)=(0,0)(u_1,u_2)=(0,0), then (4.2) has the unique solution ψ(0,0)=0\psi(0,0)=0.

Secondly, a simple calculation gives

J(v1,v2)12ψ((v1,v2))zd1L2(Ω)2+β2(v1,v2)ZD2 \mathcal{J}(v_1,v_2)\coloneqq \frac{1}{2}\|\psi((v_1,v_2))-z_d^1\|_{L^2(\Omega)}^2 + \frac{\beta}{2}\|(v_1,v_2)\|^{2}_{\mathcal{Z} _{D}}

=12ψ(v1,v2)L2(Ω)2Ωψ(v1,v2)zd1  dx+12zd1L2(Ω)2+β2(v1,v2)ZD2 = \frac 12 \|\psi(v_1,v_2)\|^2_{L^2(\Omega)} - \int_{\Omega} \psi(v_1,v_2)\, z_d^1\;\mathrm{d}x +\frac 12 \|z_d^1\|^2_{L^2(\Omega)}+\frac{\beta}{2}\|(v_1,v_2)\|^{2}_{\mathcal{Z} _{D}}

=π((v1,v2),(v1,v2))L((v1,v2))+zd1L2(Ω)2 = \pi((v_1,v_2),(v_1,v_2))-L((v_1,v_2))+ \|z_d^1\|^2_{L^2(\Omega)}

where

π((u1,u2),(v1,v2))12Ωψ(u1,u2)ψ(v1,v2)  dx  +β2Ωv1u1  dx+β2RNΩv2u2  dx, \pi((u_1,u_2),(v_1,v_2)) \coloneqq \frac 12 \int_{\Omega} \psi(u_1,u_2)\,\psi(v_1,v_2) \;\mathrm{d}x\; + \frac{\beta}{2}\int_{\partial \Omega}v_1\, u_1 \;\mathrm{d}x + \frac{\beta}{2}\int_{\mathbb{R}^N\setminus\Omega}v_2\, u_2 \;\mathrm{d}x,

and

L(v1,v2)Ωψ(v1,v2)zd1  dx. L(v_1,v_2) \coloneqq \int_{\Omega} \psi(v_1,v_2)\,z_d^1\;\mathrm{d}x.

It is clear that π((,),(,))\pi((\cdot,\cdot),(\cdot,\cdot)) is a bilinear and symmetric functional. It is continuous and coercive on Zad\mathcal{Z}_{ad}. Thus, using the abstract results in [6, Chapter II, Section 1.2], we can then deduce that there exists a unique (u1,u2)Zad(\overline{u}_{1}, \overline{u}_{2})\in \mathcal{Z}_{ad} solution to (4.4).
\square

Next, we characterize the optimality conditions.

 

Theorem 4.2.

Let 0<s3/40 \lt s\le 3/4 and U=H01(Ω)H1(Ω).\mathbb{U}= H^1_0(\Omega)\cap H^{-1}(\Omega). Let also Zad\mathcal{Z}_{ad} be a closed convex subspace of ZD Z_{D}, and (u1,u2)(\overline{u}_{1}, \overline{u}_{2}) be the minimizer (4.4) over Zad\mathcal{Z}_{ad}. Then, there exist pp^{\star} and ψ\psi^{\star} such that the triplet (ψ,p,(u1,u2))L2(RN)×U×Zad(\psi^{\star},p^{\star},(\overline{u}_{1}, \overline{u}_{2}))\in L^2(\mathbb{R}^{N})\times \mathbb{U}\times \mathcal{Z}_{ad} satisfies the following optimality systems:

{Δψ+(Δ)sψ=0in  Ω,ψ=u1in  Ω,ψ=u2in  RNΩ,(4.5) \begin{cases} -\Delta \psi^{\star} + (-\Delta)^{s}\psi^{\star} = 0 & { in }\; \Omega,\\ \psi^{\star} = \overline{u}_{1} & { in }\; \partial \Omega , \\ \psi^{\star} = \overline{u}_{2} & { in }\; \mathbb{R}^N\setminus\Omega, \\ \end{cases}  (4.5)

and

{Δp+(Δ)sp=zd1ψinΩ,p=0in  RNΩ,(4.6) \begin{cases} -\Delta p^{\star} + (-\Delta)^{s}p^{\star} = z_d^1-\psi^{\star} & { in } \Omega, \\ p^{\star} = 0 & { in }\; \mathbb{R}^N\setminus\Omega , \\ \end{cases}  (4.6)

and

Ω(νp+βu1)(v1u1)dσ+RNΩ(Nsp+βu2)(v2u2)dx0      (v1,v2)Zad.(4.7) \int_{\partial \Omega}\left(\partial_\nu p^{\star}+\beta \overline{u}_{1}\right)(v_1-\overline{u}_{1})\, \mathrm{d}\sigma + \int_{\mathbb{R}^N\setminus\Omega}\left(\mathcal{N}_s p^{\star}+\beta \overline{u}_{2}\right)(v_2-\overline{u}_{2})\, \mathrm{d}x\,\geq 0 \;\;\;\forall (v_1,v_2)\in \mathcal{Z}_{ad}.  (4.7)

In addition,

(u1,u2)=P(β1νp,β1Nsp)(4.8) (\overline{u}_{1}, \overline{u}_{2})= \mathbb P(-\beta^{-1}\partial_\nu p^{\star}, -\beta^{-1}\mathcal{N}_s p^{\star})  (4.8)

where P\mathbb P is the projection onto the set Zad\mathcal{Z}_{ad}.

 

Proof

Let (u1,u2)Zad(\overline{u}_{1}, \overline{u}_{2})\in \mathcal{Z}_{ad} be the unique solution of the minimization problem (4.4). We denote by ψψ(u1,u2)\psi^{\star}\coloneqq \psi^{\star}(\overline{u}_{1}, \overline{u}_{2}) the associated state so that, ψ\psi^{\star} solves the system (4.5) in the very-weak sense.

Using classical duality arguments we have that (4.6) is the dual system associated with (4.5). Since zd1ψL2(Q)z_d^1-\psi^{\star} \in L^2(Q), it follows that (4.6) has a unique weak solution pUp^\star\in \mathbb U.

To prove the last assertion (4.7), we write the Euler Lagrange first order optimality condition that characterizes the optimal control (u1,u2)(\overline{u}_{1}, \overline{u}_{2}) as follows:

limλ0J1(u1+λ(v1u1),u2+λ(v2u2))J1(u1,u2)λ0,    v(v1,v2)Zad.(4.9) \lim_{\lambda\to 0}\frac{J_1(\overline{u}_{1}+\lambda (v_1-\overline{u}_{1}),\overline{u}_{2}+\lambda (v_2-\overline{u}_{2}))-J_1(\overline{u}_{1},\overline{u}_{2})}{\lambda}\geq 0,\;\;\forall v\coloneqq (v_1,v_2)\in \mathcal{Z}_{ad}.  (4.9)

Recall that

J1(u1+λ(v1u1),u2+λ(v2u2)) J_1(\overline{u}_{1}+\lambda (v_1-\overline{u}_{1}),\overline{u}_{2}+\lambda (v_2-\overline{u}_{2}))

=12ψ(u1+λ(v1u1),u2+λ(v2u2))zd1L2(Ω)2 =\frac 12\|\psi(\overline{u}_{1}+\lambda (v_1-\overline{u}_{1}),\overline{u}_{2}+\lambda (v_2-\overline{u}_{2}))-z_d^1\|_{L^2(\Omega)}^2

+β2u1+λ(v1u1),(u2+λ(v2u2))ZD2, +\frac{\beta}{2}\|\overline{u}_{1}+\lambda (v_1-\overline{u}_{1}),(\overline{u}_{2}+\lambda (v_2-\overline{u}_{2}))\|_{\mathcal Z_D}^2,

where ψλψ(u1+λ(v1u1),(u2+λ(v2u2))\psi^\lambda\coloneqq \psi(\overline{u}_{1}+\lambda (v_1-\overline{u}_{1}),(\overline{u}_{2}+\lambda (v_2-\overline{u}_{2})) is the unique very-weak solution of the system

{Δψλ+(Δ)sψλ=0inΩ,ψλ=u1+λ(v1u1)inΩ,ψλ=u2+λ(v2u2)inRNΩ,(4.10) \begin{cases} -\Delta \psi^\lambda + (-\Delta)^{s} \psi^\lambda = 0 & {in } \Omega, \\ \psi^\lambda =\overline{u}_{1}+\lambda( v_1- \overline{u}_{1}) & {in } \partial \Omega , \\ \psi^\lambda=\overline{u}_{2}+\lambda(v_2-\overline{u}_{2}) & {in } \mathbb{R}^N\setminus\Omega , \\ \end{cases}  (4.10)

Using the linearity of the system and the uniqueness of very-weak solutions, we get that

ψλ=ψ(u1,u2)+λψ(v1u1,v2u2)=ψ+λψ,(4.11) \psi^\lambda =\psi^{\star}(\overline{u}_{1},\overline{u}_{2}) +\lambda\psi(v_1-\overline{u}_{1},v_2-\overline{u}_{2})=\psi^{\star}+\lambda\psi,  (4.11)

where ψ\psi is the unique very-weak solution of

{Δψ+(Δ)sψ=0inΩ,ψ=v1u1inΩ,ψ=v2u2inRNΩ,(4.12) \begin{cases} -\Delta \psi + (-\Delta)^{s} \psi = 0 & {in } \Omega, \\ \psi = v_1- \overline{u}_{1} & {in } \partial \Omega , \\ \psi= v_2-\overline{u}_{2} & {in } \mathbb{R}^N\setminus\Omega , \\ \end{cases}  (4.12)

It follows from (4.9) and (4.11) that

0J1(u1+λ(v1u1),u2+λ(v2u2)) 0\le J_1(\overline{u}_{1}+\lambda (v_1-\overline{u}_{1}),\overline{u}_{2}+\lambda (v_2-\overline{u}_{2}))

=12ψL2(Ω)2+12λ2ψL2(Ω)2+12zd1L2(Ω)2 =\frac 12 \|\psi^{\star}\|_{L^2(\Omega)}^2+\frac 12\lambda^2\|\psi\|_{L^2(\Omega)}^2+\frac 12\|z_d^1\|_{L^2(\Omega)}^2

+λΩψψ  dx  Ωψzd1  dx +\lambda\int_{\Omega}\psi^{\star}\psi\;\mathrm{d}x\; -\int_{\Omega}\psi^{\star} z_d^1\;\mathrm{d}x

λΩψzd1  dx+β2(u1,u2)ZD2 -\lambda\int_{\Omega}\psi z_d^1\;\mathrm{d}x +\frac{\beta}{2}\|(\overline{u}_{1},\overline{u}_{2})\|_{\mathcal Z_D}^2

+λ2β2(v1u1,v2u2)ZD2 +\frac{\lambda^2\beta}{2}\|(v_1-\overline{u}_{1},v_2-\overline{u}_{2})\|_{\mathcal Z_D}^2

+λβΩu1(v1u1)  dσ +\lambda\beta\int_{\partial \Omega}\overline{u}_{1}(v_1-\overline{u}_{1})\;\mathrm{d}\sigma

+λβRNΩu2(v2u2)  dx.(4.13) +\lambda\beta\int_{\mathbb{R}^N\setminus\Omega}\overline{u}_{2}(v_2-\overline{u}_{2})\;\mathrm{d}x.  (4.13)

It follows from (4.13) that

0J1(u1+λ(v1u1),u2+λ(v2u2))J1(u1,u2)λ 0\le \frac{J_1(\overline{u}_{1}+\lambda (v_1-\overline{u}_{1}),\overline{u}_{2}+\lambda (v_2-\overline{u}_{2}))-J_1(\overline{u}_{1},\overline{u}_{2})}{\lambda}

=12λψL2(Ω)2+Ωψψ  dx+βRNΩu2(v2u2)  dσ =\frac 12\lambda\|\psi\|_{L^2(\Omega)}^2+\int_{\Omega}\psi^{\star}\psi\;\mathrm{d}x +\beta\int_{\mathbb{R}^N\setminus\Omega}\overline{u}_{2}(v_2-\overline{u}_{2})\;\mathrm{d}\sigma

Ωψzd1  dx   -\int_{\Omega}\psi z_d^1\;\mathrm{d}x\;

+λβ2(v1u1,v2u2)ZD2+βΩu1(v1u1)  dσ.(4.14) +\frac{\lambda\beta}{2}\|(v_1-\overline{u}_{1},v_2-\overline{u}_{2})\|_{\mathcal Z_D}^2+\beta\int_{\partial \Omega}\overline{u}_{1}(v_1-\overline{u}_{1})\;\mathrm{d}\sigma.  (4.14)

Taking the limit of (4.14) as λ0\lambda\downarrow 0, we obtain

Ωψψ  dx  Ωψzd1  dx  +βΩu1(v1u1)  dσ+βRNΩu2(v2u2)  dσ0. \int_{\Omega}\psi^{\star} \psi\;\mathrm{d}x\; -\int_{\Omega}\psi z_d^1\;\mathrm{d}x\; +\beta\int_{\partial \Omega}\overline{u}_{1}(v_1-\overline{u}_{1})\;\mathrm{d}\sigma +\beta\int_{\mathbb{R}^N\setminus\Omega}\overline{u}_{2}(v_2-\overline{u}_{2})\;\mathrm{d}\sigma \ge 0.

That is, for all (v1,v2)Zad(v_1,v_2)\in \mathcal{Z}_{ad}, we have

Ωψ(ψzd)dx+βΩu1(v1u1)     dσ+βRNΩu2(v2u2)dx0.(4.15) \int_{\Omega} \psi\Big(\psi^{\star}-z_d\Big) \mathrm{d}x + \beta\int_{\partial \Omega} \overline{u}_{1}(v_1-\overline{u}_{1})\, \;\;\mathrm{d}\sigma +\beta\int_{\mathbb{R}^N\setminus\Omega} \overline{u}_{2}(v_2-\overline{u}_{2})\, \mathrm{d}x \geq 0.  (4.15)

Next, taking pp^{\star} (the solution of (4.6)) as a test function in the definition of very-weak solutions to (4.12) we get that

Ωψ(zd1ψ)  dx+Ω(v1u)νp    dσ+RNΩ(v2u2)Nsp  dx=0.(4.16) \int_{\Omega}\psi\Big(z_d^1-\psi^{\star}\Big)\;\mathrm{d}x +\int_{\partial \Omega}(v_1-u^\star)\partial_\nu p^\star\;\;\mathrm{d}\sigma +\int_{\mathbb{R}^N\setminus\Omega}(v_2-\overline{u}_{2})\mathcal N_s p^\star\;\mathrm{d}x = 0.  (4.16)

Combining (4.15)-(4.16), we get (4.7). The justification of (4.8) is classical and the proof is finished.
\square

 

References

[1] J-D. Djida, G. Mophou, and M. Warma. Optimal control of mixed local-nonlocal parabolic PDE with singular boundary-exterior data. Evolution Equations and Control Theory, doi:10.3934/eect.2022015.
[2] H. Antil, R. Khatri, and M. Warma. External optimal control of nonlocal PDEs. Inverse Problems 35 (2019), no. 8, 084003, 35 pp.
[3] F. Gesztesy and M. Mitrea. A description of all self-adjoint extensions of the Laplacian and Kre˘ıntype resolvent formulas on non-smooth domains. J. Anal. Math. 113 (2011), 53–172.
[4] P. Grisvard. Elliptic problems in nonsmooth domains. Reprint of the 1985 original [MR0775683]. With a foreword by Susanne C. Brenner. Classics in Applied Mathematics, 69. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
[5] G. Grubb. Regularity in Lp Sobolev spaces of solutions to fractional heat equations. J. Funct. Anal. 274 (2018), no. 9, 2634–2660.
[6] J.-L. Lions. Optimal control of systems governed by partial differential equations. Translated from the French by S. K. Mitter Die Grundlehren der mathematischen Wissenschaften, Band 170 SpringerVerlag, New York-Berlin 1971.