Skip to content
  • enzuazua
  • Events Calendar
  • Jobs
cmc.deusto.eus
  • Home
  • About us
    • About DeustoCCM
    • Head of DeustoCCM
    • Team
    • Past Members
  • Research
    • Projects
    • ERC CoDeFeL
    • Computational Mathematics Research Group
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications by year
      • Publications 2025
      • Publications 2024
      • Publications 2023
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Seminars
    • Highlights
    • Our Latest
    • Courses
    • Past Events
    • enzuazua
    • Gallery
  • Jobs
  • Contact

A fragmentation phenomenon for a non-energetic optimal control problem: optimisation of the total population size in logistic diffusive models

I. Mazari, D. Ruiz-Balet. A fragmentation phenomenon for a non-energetic optimal control problem: optimisation of the total population size in logistic diffusive models (2020)

Abstract. Following the recent works [9, 17, 30, 31, 37], we investigate the problem of optimising the total population size for logistic diffusive models with respect to resources distributions. Using the spatially heterogeneous Fisher-KPP equation, we obtain a surprising fragmentation phenomenon: depending on the scale of diffusivity (i.e the dispersal rate), it is better to either concentrate or fragment resources. Our main result is that, the smaller the dispersal rate of the species in the domain, the more optimal resources distributions tend to oscillate. This is in sharp contrast with other criteria in population dynamics, such as the classical problem of optimising the survival ability of a species, where concentrating resources is always favourable, regardless of the diffusivity. Our study is completed by numerous numerical simulations that confirm our results.

Read Full Paper

  • Benasque XI Workshop-Summer School 2026: Partial differential equations, optimal design and numerics
  • The Mathematics of Scientific Machine Learning and Digital Twins
  • DeustoCCM Seminar: Research on Control Problems of Several Types of Infinite-Dimensional Systems
  • DeustoCCM Seminar: Developing Mathematical and Physical Tools for Multiscale Dynamical Systems. Applications to Neurophysiological Data
Copyright 2016 - 2025 DeustoCCM — cmc.deusto.eus. All rights reserved. Chair of Computational Mathematics, University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad