About the chair
The Chair of Computational Mathematics of Fundación Deusto at University of Deusto, Bilbao (Basque Country, Spain) aims to develop an active research, training and outreach agenda in various aspects of Applied Mathematics. The Chair is committed with the development of ground-breaking research in the areas of Partial Differential Equations, Control Theory, Numerical Analysis and Scientific Computing; key tools for technological transfer and for the interaction of Mathematics with other scientific disciplines such as Biology, Engineering, Earth and Climate Sciences.
Enrique Zuazua
Enrique Zuazua (Eibar, Basque Country – Spain, 1961) holds an Alexander von Humboldt Professorship at the Friedrich–Alexander University (FAU), Erlangen (Germany). He is also the Director of the Chair of Computational Mathematics at Deusto Foundation, Universidad de Deusto (Bilbao, Basque Country-Spain) where he led the research team funded by the ERC Advanced Grant DyCoN project (2016-2022). He is also a Professor of Applied Mathematics since 2001 at the Department of Mathematics of the Autonomous University of Madrid where he holds a Strategic Chair.
ERC DyCon project
DyCon: Dynamic Control is an European project funded by the European Research Council – ERC (2016 – 2022), focused at making a breakthrough contribution in the broad area of Control of Partial Differential Equations (PDE) and their numerical approximation methods by addressing key unsolved issues appearing systematically in real-life applications. The field of PDEs, together with numerical approximation, simulation methods and control theory, has evolved significantly to address the industrial demands.
Our latest!
An inverse problem for Moore-Gibson-Thompson equation arising in high intensity ultrasound
Averaged turnpike property for differential equations with random constant coefficients. Mathematical Control and Related Fields
Boundary Controllability for the 1D Moore-Gibson-Thompson equation
Controllability properties from the exterior under positivity constraints for a 1-D fractional heat equation
Discrete Carleman estimates and application to controllability for a fully-discrete parabolic operator with dynamic boundary conditions
Noboru Sakamoto – Long time horizon control & Turnpike
Averaged dynamics and control for heat equations with random diffusion by Jon Asier Bárcena Petisco
Reaction-diffusion in Social and Biological Sciences: Dynamics and ResNet Control by Enrique Zuazua
Large-time asymptotics in Deep Learning by Borjan Geshkovski
CCM Seminar: Averaged dynamics and control for heat equations with random diffusion
Optimal Control and Design of Structures and Fluids by Enrique Zuazua
Enrique Zuazua – Seminar on PDE and Applied Mathematics, Brazil
Turnpike Control and Deep Learning by Enrique Zuazua at IITK
Turnpike Control and Deep Learning – Fields Institute 2nd Simposium on Machine Learning and Dynamical Systems
|| Looking for our DyCon blog posts?