Carlos Esteve Yagüe is an Associated Researcher at the ERC Advanced Grant project DyCon at Deusto Chair of Computational Mathematics under the supervision of Prof. Enrique Zuazua (FAU, University of Deusto and Universidad Autónoma de Madrid). He earned his PhD on analysis of nonlinear parabolic partial differential equations under the supervision of Prof. Philippe Souplet (Université Paris 13).
- PhD in Applied Mathematics (2015 - 2019). Université Paris 13, France
- MSc in Fundamental Mathematics (2014 - 2015). Université Paris 13, France
- BSc in Mathematics (2010 - 2014). Universidad de Alicante, Spain
Released
Reachable set for Hamilton-Jacobi equations with non-smooth Hamiltonian and scalar conservation laws
C. Esteve, E. Zuazua. Reachable set for Hamilton-Jacobi equations with non-smooth Hamiltonian and scalar conservation laws Nonlinear Analysis, Vol. 227, ...
Multilevel Selective Harmonic Modulation via Optimal Control
U. Biccari, C. Esteve-Yagüe, D.J. Oroya-Villalta (2022) Multilevel Selective Harmonic Modulation via Optimal Control., Appl Math Optim, Vol. 86, No. 43, ...
Differentiability with respect to the initial condition for Hamilton-Jacobi equations
C. Esteve, E. Zuazua. Differentiability with respect to the initial condition for Hamilton-Jacobi equations (2022) SIAM Journal on Mathematical Analysis, ...
The turnpike property and the longtime behavior of the Hamilton-Jacobi-Bellman equation for finite-dimensional LQ control problems
C. Esteve, H. Kouhkouh, D. Pighin, E. Zuazua. The turnpike property and the long-time behavior of the Hamilton-Jacobi-Bellman equation for finite-dimensional ...
Turnpike in Lipschitz-nonlinear optimal control
Esteve C., Geshkovski G., Pighin D., Zuazua E. . Turnpike in Lipschitz-nonlinear optimal control Nonlinearity. Vol 5. No. 34, pp ...
The Inverse Problem for Hamilton-Jacobi equations and Semiconcave Envelopes
Esteve C., Zuazua E.. The Inverse Problem for Hamilton-Jacobi equations and Semiconcave Envelopes SIAM J. Math. Anal., Vol. 52, No ...
Accepted
No posts found.
Submitted
Large-time asymptotics in deep learning
C. Esteve, B. Geshkovski, D. Pighin, E. Zuazua (2025) Large-time asymptotics in deep learning, https://hal.archives-ouvertes.fr/hal-02912516 Abstract. We consider the neural ODE ...
Sparse approximation in learning via neural ODEs
Esteve C., Geshkovski B. Sparse approximation in learning via neural ODEs (2021) Abstract. We consider the continuous-time, neural ordinary differential equation ...
- 15.01.2020 The inverse problem for Hamilton-Jacobi equations and semiconcave envelopes, University of Alicante, Spain | PDF Slides
- 13.09.2019 On some reversibility properties of Hamilton-Jacobi equations, Deusto Foundation-University of Deusto, Bilbao, Spain | PDF Slides
- 29.08.2019 Games for the evolution problem associated to the eigenvalues of the Hessian, 8th Workshop on PDE, Optimal Design and Numerics, Centro de Ciencias “Pedro Pascual”, Benasque, Spain | PDF Slides
- 17.07.2018 Touchdown localization for the MEMS problem with variable dielectric permittivity, Seminario de Ecuaciones Diferenciales y Análisis Numérico del Departamento de Matemática, Universidad de Buenos Aires, Argentina | PDF Slides











