Carlos Esteve Yagüe is an Associated Researcher at the ERC Advanced Grant project DyCon at Deusto Chair of Computational Mathematics under the supervision of Prof. Enrique Zuazua (FAU, University of Deusto and Universidad Autónoma de Madrid). He earned his PhD on analysis of nonlinear parabolic partial differential equations under the supervision of Prof. Philippe Souplet (Université Paris 13).
- PhD in Applied Mathematics (2015 - 2019). Université Paris 13, France
- MSc in Fundamental Mathematics (2014 - 2015). Université Paris 13, France
- BSc in Mathematics (2010 - 2014). Universidad de Alicante, Spain
Released
Reachable set for Hamilton-Jacobi equations with non-smooth Hamiltonian and scalar conservation laws
Esteve C., Zuazua E.. Reachable set for Hamilton-Jacobi equations with non-smooth Hamiltonian and scalar conservation laws (2022) Nonlinear Analysis, Vol ...
The turnpike property and the longtime behavior of the Hamilton-Jacobi-Bellman equation for finite-dimensional LQ control problems
C. Esteve, H. Kouhkouh, D. Pighin, E. Zuazua. The turnpike property and the long-time behavior of the Hamilton-Jacobi-Bellman equation for finite-dimensional ...
Turnpike in Lipschitz-nonlinear optimal control
Esteve C., Geshkovski G., Pighin D., Zuazua E. . Turnpike in Lipschitz-nonlinear optimal control Nonlinearity. Vol 5. No. 34, pp ...
Differentiability with respect to the initial condition for Hamilton-Jacobi equations
Esteve C., Zuazua E.. Differentiability with respect to the initial condition for Hamilton-Jacobi equations (2022) SIAM Journal on Mathematical Analysis, ...
The Inverse Problem for Hamilton-Jacobi equations and Semiconcave Envelopes
Esteve C., Zuazua E.. The Inverse Problem for Hamilton-Jacobi equations and Semiconcave Envelopes SIAM J. Math. Anal., Vol. 52, No ...
Accepted
Multilevel Selective Harmonic Modulation via Optimal Control
Umberto Biccari, Carlos Esteve-Yagüe, Deyviss Jesús Oroya-Villalta. Multilevel Selective Harmonic Modulation via Optimal Control. (2022) Applied Mathematics and Optimization Abstract. We ...
Submitted
Sparse approximation in learning via neural ODEs
Esteve C., Geshkovski B. Sparse approximation in learning via neural ODEs (2021) Abstract. We consider the continuous-time, neural ordinary differential equation ...
Large-time asymptotics in deep learning
Esteve C., Geshkovski B., Pighin D., Zuazua E. Large-time asymptotics in deep learning (2021). hal-02912516 Abstract. It is by now well-known ...
- 15.01.2020 The inverse problem for Hamilton-Jacobi equations and semiconcave envelopes, University of Alicante, Spain | PDF Slides
- 13.09.2019 On some reversibility properties of Hamilton-Jacobi equations, Deusto Foundation-University of Deusto, Bilbao, Spain | PDF Slides
- 29.08.2019 Games for the evolution problem associated to the eigenvalues of the Hessian, 8th Workshop on PDE, Optimal Design and Numerics, Centro de Ciencias “Pedro Pascual”, Benasque, Spain | PDF Slides
- 17.07.2018 Touchdown localization for the MEMS problem with variable dielectric permittivity, Seminario de Ecuaciones Diferenciales y Análisis Numérico del Departamento de Matemática, Universidad de Buenos Aires, Argentina | PDF Slides