Null controllability of a nonlocal heat equation with an additive integral kernel

U. Biccari, V. Hernández-Santamaría Null controllability of a nonlocal heat equation with integral kernel. SIAM J. Control Optim., Vol. 57, No. 4 (2019), pp. 2924-2938, DOI: 10.1137/18M1218431 Abstract: We consider a linear nonlocal heat equation in a bounded domain $\Omega\subset\mathbb{R}^d$ with Dirichlet boundary conditions. The non-locality is given by the presence of an integral kernel.…

Null-controllability properties of a fractional wave equation with a memory term

U. Biccari, M. Warna Null-controllability properties of a fractional wave equation with a memory term Abstract: We study the null-controllability properties of a one-dimensional wave equation with memory associated with the fractional Laplace operator. The goal is not only to drive the displacement and the velocity to rest at some time-instant but also to require…

Null-controllability properties of the wave equation with a second order memory term

U. Biccari, S. Micu Null-controllability properties of the wave equation with a second order memory termJ DIFFER EQUATIONS, Vol. 267, No. 2 (2019), pp. 1376-1422 doi.org/10.1016/j.jde.2019.02.009 Abstract: We study the internal controllability of a wave equation with memory in the principal part, defined on the one-dimensional torus $\mathbb{T}=\mathbb{R}/2\pi\mathbb{Z}$. We assume that the control is acting…

Dynamics and control for multi-agent networked systems: a finite difference approach

U. Biccari, D. Ko, E. Zuazua Dynamics and control for multi-agent networked systems: a finite difference approach. Math. Models Methods Appl. Sci., Vol. 29, No. 4 (2019), pp. 755–790. DOI: 10.1142/S0218202519400050 Abstract: We analyze the dynamics of multi-agent collective behavior models and their control theoretical properties. We first derive a large population limit to parabolic…

Propagation of one and two-dimensional discrete waves under finite difference approximation

U. Biccari, A. Marica, E. Zuazua Propagation of one and two/dimensional discrete waves under finite difference approximation Abstract: We analyze the propagation properties of the numerical versions of one and two-dimensional wave equations, semi-discretized in space by finite difference schemes. We focus on high-frequency solutions whose propagation can be described, both at the continuous and…

The Poisson equation from non-local to local

U. Biccari, V. Hernández-Santamaría The Poisson equation from non-local to local, Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 145, pp. 1-13. DOI: arXiv:1801.09470 Abstract: We analyze the limit behavior as $s\to 1^-$ of the solution to the fractional Poisson equation $\fl{s}{u_s}=f_s$, $x\in\Omega$ with homogeneous Dirichlet boundary conditions $u_s\equiv 0$, $x\in\Omega^c$. We show that…