## Control of the semi-discrete 1D heat equation under nonnegative control constraint ## Greedy algorithm for Parametric Vlasov-Fokker-Planck System

PDF version...  |   Download Code... 1. Numerical experiments Consider the one dimensional linear Vlasov-Fokker-Planck (VPFP) as following. \begin{equation} \begin{cases} \delta\pt_tf + \sigma_1v\delta\pt_x f - \frac{\sigma_2}{\epsilon} \delta\pt_x\phi\delta\pt_v f =\frac{\sigma_3}{\epsilon}\delta\pt_v\ (v f +\delta\pt_vf\… ## Turnpike property for functionals involving L1−norm

We want to study the following optimal control problem: \begin{equation*} \left(\mathcal{P}\right) \ \ \ \ \ \ \ \hat{u}\in\argmin_{u\in L^2_T} \left\{J\left(u\right)=\alpha_c \norm{u}_{1,T} + \frac{\beta}{2}\norm{u}^2_{T}+\alpha_s \norm{Lu}_{1,T} + \frac{\gamma}{2}\norm{Lu-z}_{T}^2\right\}, \end{equation*} ## Numerical aspects of LTHC of Burgers equation

This issue is motivated by the challenging problem of sonic-boom minimization for supersonic aircrafts, which is governed by a Burgers-like equation. The travel time of the signal to the ground is larger than the time scale of the initial disturbance by orders of magnitude and this motivates our study of large time control of the sonic-boom propagation... ## Control of PDEs involving non-local terms

Relevant models in Continuum Mechanics, Mathematical Physics and Biology are of non-local nature. Moreover, these models are applied for the description of several complex phenomena for which a local approach is inappropriate or limiting. In this setting, classical PDE theory fails because of non-locality. Yet many of the existing techniques can be tuned and adapted, although this is often a delicate matter... ## Optimal control applied to collective behaviour

The standard approach for solving a driving problem is a leadership strategy, based on the attraction that a driver agent exerts on other agent. Repulsion forces are mostly used for collision avoidance, defending a target or describing the need for personal space. We present a “guidance by repulsion” model describing the behaviour of two agents, a driver and an evader...