Turnpike in Lipschitz-nonlinear optimal control

Esteve C., Geshkovski G., Pighin D., Zuazua E. . Turnpike in Lipschitz-nonlinear optimal control Nonlinearity. Vol 5. No. 34, pp. 1652-1701 (2022) https://doi.org/10.1088/1361-6544/ac4e61 Abstract. We present a new proof of…

The turnpike property in semilinear control

D. Pighin The turnpike property in semilinear control ESAIM Control Optim. Calc. Var., Vol. 26 (2021), pp. 1-48 Abstract.An exponential turnpike property for a semilinear control problem is proved. The…
CONVADP

CONVADP

Project name: CONVADP Project reference: CONVADP Funding source: ELKARTEK - Basque Government Duration: March 2020 - December 2021 Principal Investigator (PI): Umberto Biccari About the Project CONVADP is a collaborative…

DyCon blog

If you are looking for our DyCon ERC project output, don't miss out: Our DyCon Toolbox for computational methods and tools Our DyCon blog for our last dissemination posts about…
ERC – DyCon: Dynamic Control Project

ERC – DyCon: Dynamic Control Project

Funded by ERC - European Research Council Project Acronym: DyConProject Full Title: Dynamic Control and Numerics of Partial Differential Equations Project reference: 694126Principal Investigator: Enrique ZuazuaHost Institutions: DeustoTech - Deusto…
Averaged Control

Averaged Control

PDF version | Download Matlab Code | Download Scilab Code | GITHUB In this work, we address the optimal control of parameter-dependent systems. We introduce the notion of averaged control…
Wavecontrol

Wavecontrol

Manual PDF   |   Download Code... A Matlab guide for the numerical approximation of the exact control and stabilization of the wave equation This webpage contains a free software to compute…
Greedy algorithm for Parametric Vlasov-Fokker-Planck System

Greedy algorithm for Parametric Vlasov-Fokker-Planck System

PDF version...  |   Download Code... 1. Numerical experiments Consider the one dimensional linear Vlasov-Fokker-Planck (VPFP) as following. \begin{equation} \begin{cases} \delta\pt_tf + \sigma_1v\delta\pt_x f - \frac{\sigma_2}{\epsilon} \delta\pt_x\phi\delta\pt_v f =\frac{\sigma_3}{\epsilon}\delta\pt_v\ (v f +\delta\pt_vf\…
Kolmogorov equation

Kolmogorov equation

Read PDF version  |   Download Code 1 Introduction We are interested in the numerical discretization of the Kolmogorov equation [12] where $\mu>0$ is a diffusive function and $v$ a potential function.…